Activation of HER3 interferes with antitumor effects of Axl receptor tyrosine kinase inhibitors: suggestion of combination therapy. Torka, R; Pénzes, K; Gusenbauer, S; Baumann, C; Szabadkai, I; Őrfi, L; Kéri, G; Ullrich, A Neoplasia (New York, N.Y.)
16
301-18
2014
Mostrar resumen
The Axl receptor tyrosine kinase (RTK) has been established as a strong candidate for targeted therapy of cancer. However, the benefits of targeted therapies are limited due to acquired resistance and activation of alternative RTKs. Therefore, we asked if cancer cells are able to overcome targeted Axl therapies. Here, we demonstrate that inhibition of Axl by short interfering RNA or the tyrosine kinase inhibitor (TKI) BMS777607 induces the expression of human epidermal growth factor receptor 3 (HER3) and the neuregulin 1(NRG1)-dependent phosphorylation of HER3 in MDA-MB231 and Ovcar8 cells. Moreover, analysis of 20 Axl-expressing cancer cell lines of different tissue origin indicates a low basal phosphorylation of RAC-α serine/threonine-protein kinase (AKT) as a general requirement for HER3 activation on Axl inhibition. Consequently, phosphorylation of AKT arises as an independent biomarker for Axl treatment. Additionally, we introduce phosphorylation of HER3 as an independent pharmacodynamic biomarker for monitoring of anti-Axl therapy response. Inhibition of cell viability by BMS777607 could be rescued by NRG1-dependent activation of HER3, suggesting an escape mechanism by tumor microenvironment. The Axl-TKI MPCD84111 simultaneously blocked Axl and HER2/3 signaling and thereby prohibited HER3 feedback activation. Furthermore, dual inhibition of Axl and HER2/3 using BMS777607 and lapatinib led to a significant inhibition of cell viability in Axl-expressing MDA-MB231 and Ovcar8 cells. Therefore, we conclude that, in patient cohorts with expression of Axl and low basal activity of AKT, a combined inhibition of Axl and HER2/3 kinase would be beneficial to overcome acquired resistance to Axl-targeted therapies. | Western Blotting | | 24862757
|
Metformin and salinomycin as the best combination for the eradication of NSCLC monolayer cells and their alveospheres (cancer stem cells) irrespective of EGFR, KRAS, EML4/ALK and LKB1 status. Xiao, Z; Sperl, B; Ullrich, A; Knyazev, P Oncotarget
5
12877-90
2014
Mostrar resumen
The presence of cancer stem cells (CSCs) is linked to preexisting or acquired drug resistance and tumor relapse. Therefore, targeting both differentiated tumor cells and CSCs was suggested as an effective approach for non-small cell lung cancer (NSCLC) treatment. After screening of chemotherapeutic agents, tyrosine kinase inhibitors (TKIs) or monoclonal antibody in combination with the putative stem cell killer Salinomycin (SAL), we found Metformin (METF), which modestly exerted a growth inhibitory effect on monolayer cells and alveospheres/CSCs of 5 NSCLC cell lines regardless of their EGFR, KRAS, EML4/ALK and LKB1 status, interacted synergistically with SAL to effectively promote cell death. Inhibition of EGFR (AKT, ERK1/2) and mTOR (p70 s6k) signaling with the combination of METF and SAL can be augmented beyond that achieved using each agent individually. Phospho-kinase assay further suggested the multiple roles of this combination in reducing oncogenic effects of modules, such as ß-catenin, Src family kinases (Src, Lyn, Yes), Chk-2 and FAK. Remarkably, significant reduction of sphere formation was seen under combinatorial treatment in all investigated NSCLC cell lines. In conclusion, METF in combination with SAL could be a promising treatment option for patients with advanced NSCLC irrespective of their EGFR, KRAS, EML4/ALK and LKB1 status. | Western Blotting | | 25375092
|
Uteroplacental insufficiency alters rat hippocampal cellular phenotype in conjunction with ErbB receptor expression. Fung, C; Ke, X; Brown, AS; Yu, X; McKnight, RA; Lane, RH Pediatric research
72
2-9
2011
Mostrar resumen
Uteroplacental insufficiency (UPI) produces significant neurodevelopmental deficits affecting the hippocampus of intrauterine growth-restricted (IUGR) offspring. IUGR males have worse deficits as compared with IUGR females. The exact mechanisms underlying these deficits are unclear. Alterations in hippocampal cellular composition along with altered expression of neural stem cell (NSC) differentiation molecules may underlie these deficits. We hypothesized that IUGR hippocampi would be endowed with altered neuronal, astrocytic, and immature oligodendrocytic proportions at birth, with males showing greater cellular deficits. We further hypothesized that UPI would perturb rat hippocampal expression of ErbB receptors (ErbB-Rs) and neuregulin 1 (NRG1) at birth and at weaning to account for the short- and long-term IUGR neurological sequelae.A well-established rat model of bilateral uterine artery ligation at embryonic day 19.5 was used to induce IUGR.As compared with gender-matched controls, IUGR offspring have altered hippocampal neuronal, astrocytic, and immature oligodendrocytic composition in a subregion- and gender-specific manner at birth. In addition, IUGR hippocampi have altered receptor type- and gender-specific ErbB-R expression at birth and at weaning.These cellular and molecular alterations may account for the neurodevelopmental complications of IUGR and for the male susceptibility to worse neurologic outcomes. | | | 22367251
|
Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Wong, VW; Stange, DE; Page, ME; Buczacki, S; Wabik, A; Itami, S; van de Wetering, M; Poulsom, R; Wright, NA; Trotter, MW; Watt, FM; Winton, DJ; Clevers, H; Jensen, KB Nature cell biology
14
401-8
2011
Mostrar resumen
Maintenance of adult tissues is carried out by stem cells and is sustained throughout life in a highly ordered manner. Homeostasis within the stem-cell compartment is governed by positive- and negative-feedback regulation of instructive extrinsic and intrinsic signals. ErbB signalling is a prerequisite for maintenance of the intestinal epithelium following injury and tumour formation. As ErbB-family ligands and receptors are highly expressed within the stem-cell niche, we hypothesize that strong endogenous regulators must control the pathway in the stem-cell compartment. Here we show that Lrig1, a negative-feedback regulator of the ErbB receptor family, is highly expressed by intestinal stem cells and controls the size of the intestinal stem-cell niche by regulating the amplitude of growth-factor signalling. Intestinal stem-cell maintenance has so far been attributed to a combination of Wnt and Notch activation and Bmpr inhibition. Our findings reveal ErbB activation as a strong inductive signal for stem-cell proliferation. This has implications for our understanding of ErbB signalling in tissue development and maintenance and the progression of malignant disease. | | Mouse | 22388892
|
Concomitant targeting of EGF receptor, TGF-beta and SRC points to a novel therapeutic approach in pancreatic cancer. Deharvengt, S; Marmarelis, M; Korc, M PloS one
7
e39684
2011
Mostrar resumen
To test the hypothesis that concomitant targeting of the epidermal growth factor receptor (EGFR) and transforming growth factor-beta (TGF-β) may offer a novel therapeutic approach in pancreatic cancer, EGFR silencing by RNA interference (shEGFR) was combined with TGF-β sequestration by soluble TGF-β receptor II (sTβRII). Effects on colony formation in 3-dimensional culture, tumor formation in nude mice, and downstream signaling were monitored. In both ASPC-1 and T3M4 cells, either shEGFR or sTβRII significantly inhibited colony formation. However, in ASPC-1 cells, combining shEGFR with sTβRII reduced colony formation more efficiently than either approach alone, whereas in T3M4 cells, shEGFR-mediated inhibition of colony formation was reversed by sTβRII. Similarly, in vivo growth of ASPC-1-derived tumors was attenuated by either shEGFR or sTβRII, and was markedly suppressed by both vectors. By contrast, T3M4-derived tumors either failed to form or were very small when EGFR alone was silenced, and these effects were reversed by sTβRII due to increased cancer cell proliferation. The combination of shEGFR and sTβRII decreased phospho-HER2, phospho-HER3, phoshpo-ERK and phospho-src (Tyr416) levels in ASPC-1 cells but increased their levels in T3M4 cells. Moreover, inhibition of both EGFR and HER2 by lapatinib or of src by SSKI-606, PP2, or dasatinib, blocked the sTβRII-mediated antagonism of colony formation in T3M4 cells. Together, these observations suggest that concomitantly targeting EGFR, TGF-β, and src may constitute a novel therapeutic approach in PDAC that prevents deleterious cross-talk between EGFR family members and TGF-β-dependent pathways. | | | 22761868
|
Subchronic peripheral neuregulin-1 increases ventral hippocampal neurogenesis and induces antidepressant-like effects. Mahar, Ian, et al. PLoS ONE, 6: e26610 (2011)
2010
Mostrar resumen
Adult hippocampal neurogenesis has been implicated in the mechanism of antidepressant action, and neurotrophic factors can mediate the neurogenic changes underlying these effects. The neurotrophic factor neuregulin-1 (NRG1) is involved in many aspects of brain development, from cell fate determination to neuronal maturation. However, nothing is known about the influence of NRG1 on neurodevelopmental processes occurring in the mature hippocampus. | | | 22028923
|
Different changes in protein and phosphoprotein levels result from serum starvation of high-grade glioma and adenocarcinoma cell lines. Levin, VA; Panchabhai, SC; Shen, L; Kornblau, SM; Qiu, Y; Baggerly, KA Journal of proteome research
9
179-91
2009
Mostrar resumen
Tumor cells undergoing serum starvation in vitro partially mimic metabolically stressed cells trying to adjust to a changed environment in vivo by inducing signal transduction and gene expression so that the tumor continues to grow. Our hypothesis is that the changes in protein and phosphoprotein levels after serum starvation may reflect the adapted phenotype of the tumor, which could be targeted for therapy. We used reverse-phase protein microarrays to interrogate five high-grade glioma cell lines and seven adenocarcinoma cell lines for differences in the level of 81 proteins and 25 phosphoproteins. All cell lines were studied in the well-fed condition of growth with 10% FBS and the starved condition of 0.5% FBS. Protein expression levels were normalized to beta-actin and trichotomized as increased (+1, upper 75th quartile), decreased (-1, lowest 25th quartile), or unchanged (0, others) to focus on the patterns of the biggest (and hopefully most robust) changes in protein and phosphoprotein levels. We examined these trichotomized values to better understand Starved-Fed differences among the cell lines and thereby gain better/clearer insight into the effects of serum starvation on potential cellular responses. In general, the expression of proteins and phosphoproteins 24 h after FBS starvation increased more often in glioma lines than in adenocarcinoma lines, which appeared to have fewer increased protein scores and more decreased scores. Many of the proteins increased in gliomas were downstream targets of the PTEN-PI-3 kinase-AKT, EGFR-MAPK-Stat, and transcription activator-polyamine signaling pathways. In adenocarcinomas, the expression of proteins and phosphoproteins generally increased in apoptosis pathways, while there were minor fluctuations in the other pathways above. Contrawise, gliomas become resistant to apoptosis after 24 h of serum starvation and upregulate transcription activators and polyamines more so than adenocarciomas. | Western Blotting | Human | 19894763
|
Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Scaltriti, M; Verma, C; Guzman, M; Jimenez, J; Parra, JL; Pedersen, K; Smith, DJ; Landolfi, S; Ramon y Cajal, S; Arribas, J; Baselga, J Oncogene
28
803-14
2009
Mostrar resumen
Lapatinib is a human epidermal growth factor receptor 2 (HER2) tyrosine kinase inhibitor (TKI) that has clinical activity in HER2-amplified breast cancer. In vitro studies have shown that lapatinib enhances the effects of the monoclonal antibody trastuzumab suggesting partially non-overlapping mechanisms of action. To dissect these mechanisms, we have studied the effects of lapatinib and trastuzumab on receptor expression and receptor signaling and have identified a new potential mechanism for the enhanced antitumor activity of the combination. Lapatinib, given alone or in combination with trastuzumab to HER2-overexpressing breast cancer cells SKBR3 and MCF7-HER2, inhibited HER2 phosphorylation, prevented receptor ubiquitination and resulted in a marked accumulation of inactive receptors at the cell surface. By contrast, trastuzumab alone caused enhanced HER2 phosphorylation, ubiquitination and degradation of the receptor. By immunoprecipitation and computational protein modeling techniques we have shown that the lapatinib-induced HER2 accumulation at the cell surface also results in the stabilization of inactive HER2 homo- (HER2/HER2) and hetero- (HER2/EGFR and HER2/HER3) dimers. Lapatinib-induced accumulation of HER2 and trastuzumab-mediated downregulation of HER2 was also observed in vivo, where the combination of the two agents triggered complete tumor remissions in all cases after 10 days of treatment. Accumulation of HER2 at the cell surface by lapatinib enhanced immune-mediated trastuzumab-dependent cytotoxicity. We propose that this is a novel mechanism of action of the combination that may be clinically relevant and exploitable in the therapy of patients with HER2-positive tumors. | | | 19060928
|
ErbB3 expression predicts tumor cell radiosensitization induced by Hsp90 inhibition. Dote, H; Cerna, D; Burgan, WE; Camphausen, K; Tofilon, PJ Cancer research
65
6967-75
2004
Mostrar resumen
The ability to identify tumors that are susceptible to a given molecularly targeted radiosensitizer would be of clinical benefit. Towards this end, we have investigated the effects of a representative Hsp90 inhibitor, 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17DMAG), on the radiosensitivity of a panel of human tumor cell lines. 17DMAG was previously shown to enhance the radiosensitivity of a number of human cell lines, which correlated with the loss of ErbB2. We now report on cell lines in which 17DMAG induced the degradation of ErbB2, yet had no effect on radiosensitivity. In a comparison of ErbB family members, ErbB3 protein was only detectable in cells resistant to 17DMAG-induced radiosensitization. To determine whether ErbB3 plays a casual role in this resistance, short interfering RNA (siRNA) was used to knockdown ErbB3 in the resistant cell line AsPC1. Whereas individual treatments with siRNA to ErbB3 or 17DMAG had no effect on radiosensitivity, the combination, which reduced both ErbB2 and ErbB3, resulted in a significant enhancement in AsPC1 radiosensitivity. In contrast to siRNA to ErbB3 or 17DMAG treatments only, AsPC1 cell exposure to the combination also resulted in a decrease in ErbB1 kinase activity. These results indicate that ErbB3 expression predicts for tumor cell susceptibility to and suggests that the loss of ErbB1 signaling activity is necessary for 17DMAG-induced radiosensitization. However, for cell lines sensitized by 17DMAG, treatment with siRNA to ErbB2, which reduced ErbB1 activity, had no effect on radiosensitivity. These results suggest that, whereas the loss of ErbB1 signaling may be necessary for 17DMAG-induced radiosensitization, it is not sufficient. | | | 16061682
|
Molecular organization of the extraocular muscle neuromuscular junction: partial conservation of and divergence from the skeletal muscle prototype. Sangeeta Khanna, Chelliah R Richmonds, Henry J Kaminski, John D Porter Investigative ophthalmology visual science
44
1918-26
2003
Mostrar resumen
PURPOSE: The phenotypically novel extraocular muscles (EOMs) exhibit fundamental differences in innervation and neuromuscular junction (NMJ) morphology from other skeletal muscles. In the current study, the morphology and molecular organization of NMJs of EOM singly innervated (SIF) and multiply innervated (MIF) fiber types were evaluated and the distribution of molecules involved in formation and maintenance of NMJs were specifically characterized. METHODS: Adult mouse EOM NMJ organization was examined by immunofluorescence and confocal microscopy. Differential cellular localization of components of two established synaptic signaling pathways, (1) neuregulin and erbB receptors 2, 3, and 4 and (2) agrin, MuSK, and rapsyn and select NMJ-associated structural proteins were studied for EOM SIF and MIF populations. Endplate topography and structure were also studied, using both confocal microscopy and transmission electron microscopy, with NMJ morphologic organization correlated with specific EOM fiber types. RESULTS: Confocal fluorescence microscopy demonstrated that, for NMJs of both EOM SIFs and MIFs, components of neuregulin and agrin pathways and the major components of the junctional dystrophin-glycoprotein complex (DGC) colocalized with acetylcholine receptor (AChR) aggregates. However, EOM exhibited novel fiber-type-specific extrasynaptic localization of two key DGC signaling-related molecules: alpha-dystrobrevin 1 (global MIFs) and syntrophin beta1 (global MIFs and orbital MIFs and SIFs). CONCLUSIONS: The data establish that the molecular organization of EOM SIF and MIF NMJs includes the same signaling and structural molecules previously characterized for other skeletal muscles. By contrast, divergence in other aspects of the synaptic and nonsynaptic sarcolemmal organization of EOM fiber types may underlie the unique responses of these muscles in a variety of neuromuscular disorders. | | | 12714624
|