Multigenic lentiviral vectors for combined and tissue-specific expression of miRNA- and protein-based antiangiogenic factors. Askou, AL; Aagaard, L; Kostic, C; Arsenijevic, Y; Hollensen, AK; Bek, T; Jensen, TG; Mikkelsen, JG; Corydon, TJ Molecular therapy. Methods & clinical development
2
14064
2015
Mostrar resumen
Lentivirus-based gene delivery vectors carrying multiple gene cassettes are powerful tools in gene transfer studies and gene therapy, allowing coexpression of multiple therapeutic factors and, if desired, fluorescent reporters. Current strategies to express transgenes and microRNA (miRNA) clusters from a single vector have certain limitations that affect transgene expression levels and/or vector titers. In this study, we describe a novel vector design that facilitates combined expression of therapeutic RNA- and protein-based antiangiogenic factors as well as a fluorescent reporter from back-to-back RNApolII-driven expression cassettes. This configuration allows effective production of intron-embedded miRNAs that are released upon transduction of target cells. Exploiting such multigenic lentiviral vectors, we demonstrate robust miRNA-directed downregulation of vascular endothelial growth factor (VEGF) expression, leading to reduced angiogenesis, and parallel impairment of angiogenic pathways by codelivering the gene encoding pigment epithelium-derived factor (PEDF). Notably, subretinal injections of lentiviral vectors reveal efficient retinal pigment epithelium-specific gene expression driven by the VMD2 promoter, verifying that multigenic lentiviral vectors can be produced with high titers sufficient for in vivo applications. Altogether, our results suggest the potential applicability of combined miRNA- and protein-encoding lentiviral vectors in antiangiogenic gene therapy, including new combination therapies for amelioration of age-related macular degeneration. | | | 26052532
|
Pigment epithelium derived factor inhibits the growth of human endometrial implants in nude mice and of ovarian endometriotic stromal cells in vitro. Sun, Y; Che, X; Zhu, L; Zhao, M; Fu, G; Huang, X; Xu, H; Hu, F; Zhang, X PloS one
7
e45223
2011
Mostrar resumen
Angiogenesis is a prerequisite for the formation and development of endometriosis. Pigment epithelium derived factor (PEDF) is a natural inhibitor of angiogenesis. We previously demonstrated a reduction of PEDF in the peritoneal fluid, serum and endometriotic lesions from women with endometriosis compared with women without endometriosis. Here, we aim to investigate the inhibitory effect of PEDF on human endometriotic cells in vivo and in vitro. We found that PEDF markedly inhibited the growth of human endometrial implants in nude mice and of ovarian endometriotic stromal cells in vitro by up-regulating PEDF expression and down-regulating vascular endothelial growth factor (VEGF) expression. Moreover, apoptotic index was significantly increased in endometriotic lesions in vivo and endometriotic stromal cells in vitro when treated with PEDF. In mice treated with PEDF, decreased microvessel density labeled by Von Willebrand factor but not by α-Smooth Muscle Actin was observed in endometriotic lesions. And it showed no increase in PEDF expression of the ovary and uterus tissues. These findings suggest that PEDF gene therapy may be a new treatment for endometriosis. | | | 23028859
|
Assays for the antiangiogenic and neurotrophic serpin pigment epithelium-derived factor. Subramanian, P; Crawford, SE; Becerra, SP Methods in enzymology
499
183-204
2010
Mostrar resumen
Pigment epithelium-derived factor (PEDF) is a secreted serpin that exhibits a variety of interesting biological activities. The multifunctional PEDF has neurotrophic and antiangiogenic properties, and acts in retinal differentiation, survival, and maintenance. It is also antitumorigenic and antimetastatic, and has stem cell self-renewal properties. It is widely distributed in the human body and exists in abundance in the eye as a soluble extracellular glycoprotein. Its levels are altered in diseases characterized by retinopathies and angiogenesis. Its mechanisms of neuroprotection and angiogenesis are associated with receptor interactions at cell-surface interfaces and changes in protein expression. This serpin lacks demonstrable serine protease inhibitory activity, but has binding affinity to extracellular matrix components and cell-surface receptors. Here we describe purification protocols, methods to quantify PEDF, and determine interactions with specific molecules, as well as neurotrophic and angiogenesis assays for this multifunctional protein. | | | 21683255
|
Combined measurement of PEDF, haptoglobin and tau in cerebrospinal fluid improves the diagnostic discrimination between alzheimer\'s disease and other dementias. Abraham JD, Calvayrac-Pawlowski S, Cobo S, Salvetat N, Vicat G, Molina L, Touchon J, Michel BF, Molina F, Verdier JM, Fareh J, Mourton-Gilles C Biomarkers
16
161-71.
2010
Mostrar resumen
Using proteomic approach in cerebrospinal fluid (CSF) we identified pigment epithelium-derived factor (PEDF) and Haptoglobin (Hp) as putative markers that could discriminate between AD and other dementias. ELISA assays were developed to measure the levels of PEDF and Hp in CSF from patients with AD (AD, n = 27), non-AD (NAD, n = 30) and in non-demented patients (ND, n = 27). The combined assessment of PEDF, Hp and Tau levels, using Iterative Marginal Optimization, improved the differential diagnosis of AD, especially in patients with moderate to severe dementia (p<0.002). This pilot study highlights the probable different contribution of oxidative mechanisms in dementia. | | | 21323605
|
Pigment epithelium-derived factor stimulates tumor macrophage recruitment and is downregulated by the prostate tumor microenvironment. Halin, S; Rudolfsson, SH; Doll, JA; Crawford, SE; Wikström, P; Bergh, A Neoplasia (New York, N.Y.)
12
336-45
2009
Mostrar resumen
Pigment epithelium-derived factor (PEDF) is a potent inhibitor of angiogenesis but whether it has additional effects on the tumor microenvironment is largely unexplored. We show that overexpression of PEDF in orthotopic MatLyLu rat prostate tumors increased tumor macrophage recruitment. The fraction of macrophages expressing inducible nitric oxide synthase, a marker of cytotoxic M1 macrophages, was increased, suggesting that PEDF could enhance antitumor immunity. In addition, PEDF overexpression reduced vascular growth both in the tumor and in the surrounding normal tissue, slowed tumor growth, and decreased lymph node metastasis. Contrary, extratumoral lymphangiogenesis was increased. PEDF expression is, for reasons unknown, often decreased or lost during prostate tumor progression. When AT-1 rat prostate tumor cells, expressing high levels of PEDF messenger RNA (mRNA) and protein, were injected into the prostate, PEDF is markedly downregulated, suggesting that factors in the microenvironment suppressed its expression. One such factor could be macrophage-derived tumor necrosis factor alpha (TNFalpha). A fraction of the accumulating macrophages expressed TNFalpha, and TNFalpha treatment downregulated the expression of PEDF protein and mRNA in prostate AT-1 tumor cells in vitro and in the rat ventral prostate in vivo. PEDF apparently has multiple effects in prostate tumors: it suppresses angiogenesis and metastasis, but it also causes macrophage accumulation. Accumulating macrophages may inhibit tumor growth, but they may also suppress PEDF and enhance lymph angiogenesis and, in this way, eventually enhance tumor growth. | | | 20360944
|
2D-DIGE as a strategy to identify serum markers for the progression of prostate cancer. Jennifer C Byrne,Michelle R Downes,Niaobh O'Donoghue,Conor O'Keane,Amanda O'Neill,Yue Fan,John M Fitzpatrick,Michael Dunn,R William G Watson Journal of proteome research
8
2009
Mostrar resumen
Prostate cancer is the most common solid organ malignancy affecting men in the United States and Western Europe. Currently, the main diagnostic tools used to look for evidence of prostate cancer include physical examination using digital rectal exam (DRE), serum concentrations of prostate specific antigen (PSA) and biopsy. However, due to the low specificity of PSA in differentiating prostate cancer from other benign conditions, many patients undergo overtreatment for their disease. There is an urgent need for additional markers to improve the diagnostic accuracy for early stages of prostate cancer. Proteomic analysis of serum has the potential to identify such markers. An initial discovery study has been completed using 12 serum samples from patients with different grades of prostate cancer (Gleason score 5 and 7) undergoing radical prostatectomy. Serum samples were subjected to immunoaffinity depletion and protein expression analysis using 2D-DIGE. Image analysis isolated 63 spots that displayed differential expression between the Gleason score 5 and 7 cohorts (p < 0.05), 13 of which were identified as statistically significant using two independent image analysis packages. Identification of differentially expressed spots was carried out using LC-MS/MS. Because of their functional relevance and potential significance with regards to prostate cancer progression, two of these proteins, pigment epithelium-derived factor (PEDF) and zinc-alpha2-glycoprotein (ZAG), have undergone extensive validation in serum and tissue samples from the original cohort and also from a larger independent cohort of patients. These results have indicated that PEDF is a more accurate predictor of early stage prostate cancer. We are confident that proteomics-based approaches have the potential to provide more insight into the underlying molecular mechanisms of the disease and also hold great promise for biomarker discovery in prostate cancer. | | | 19093873
|
Serum PEDF levels are decreased in a spontaneous animal model for human autoimmune uveitis. Zipplies, Johanna K, et al. J. Proteome Res., 8: 992-8 (2009)
2009
| | | 19113885
|
Laminin receptor involvement in the anti-angiogenic activity of pigment epithelium-derived factor. Adrien Bernard,Jacqueline Gao-Li,Claudio-Areias Franco,Tahar Bouceba,Alexis Huet,Zhenlin Li The Journal of biological chemistry
284
2009
Mostrar resumen
Pigment epithelium-derived factor (PEDF) is a multifunctional protein with neurotrophic, anti-oxidative, and anti-inflammatory properties. It is also one of the most potent endogenous inhibitors of angiogenesis, playing an important role in restricting tumor growth, invasion, and metastasis. Studies show that PEDF binds to cell surface proteins, but little is known about how it exerts its effects. Recently, research identified phospholipase A(2)/nutrin/patatin-like phospholipase domain-containing 2 as one PEDF receptor. To identify other receptors, we performed yeast two-hybrid screening using PEDF as bait and discovered that the non-integrin 37/67-kDa laminin receptor (LR) is another PEDF receptor. Co-immunoprecipitation, His tag pulldown, and surface plasmon resonance assays confirmed the interaction between PEDF and LR. Using the yeast two-hybrid method, we further restricted the LR-interacting domain on PEDF to a 34-amino acid (aa) peptide (aa 44-77) and the PEDF-interacting domain on LR to a 91-aa fragment (aa 120-210). A 25-mer peptide named P46 (aa 46-70), derived from 34-mer, interacts with LR in surface plasmon resonance assays and binds to endothelial cell (EC) membranes. This peptide induces EC apoptosis and inhibits EC migration, tube-like network formation in vitro, and retinal angiogenesis ex vivo, like PEDF. Our results suggest that LR is a real PEDF receptor that mediates PEDF angiogenesis inhibition. Artículo Texto completo | | | 19224861
|
Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Zvonic, S; Lefevre, M; Kilroy, G; Floyd, ZE; DeLany, JP; Kheterpal, I; Gravois, A; Dow, R; White, A; Wu, X; Gimble, JM Molecular & cellular proteomics : MCP
6
18-28
2007
Mostrar resumen
Studies of adipogenic protein induction have led to a new appreciation of the role of adipose tissue as an endocrine organ. Adipocyte-derived "adipokines" such as adiponectin, leptin, and visceral adipose tissue-derived serine protease inhibitor (vaspin) exert hormone-like activities at the systemic level. In this study, we examined the secretome of primary cultures of human subcutaneous adipose-derived stem cells as an in vitro model of adipogenesis. Conditioned media obtained from four individual female donors after culture in uninduced or adipogenic induced conditions were compared by two-dimensional gel electrophoresis and tandem mass spectrometry. Over 80 individual protein features showing greater than or =2-fold relative differences were examined. Approximately 50% of the identified proteins have been described previously in the secretome of murine 3T3-L1 preadipocytes or in the interstitial fluid derived from human mammary gland adipose tissue. As reported by others, we found that the secretome included proteins such as actin and lactate dehydrogenase that do not display a leader sequence or transmembrane domain and are classified as "cytoplasmic" in origin. Moreover we detected a number of established adipokines such as adiponectin and plasminogen activator inhibitor 1. Of particular interest was the presence of multiple serine protease inhibitors (serpins). In addition to plasminogen activator inhibitor 1, these included pigment epithelium-derived factor (confirmed by Western immunoblot), placental thrombin inhibitor, pregnancy zone protein, and protease C1 inhibitor. These findings, together with the recent identification of vaspin, suggest that the serpin protein family warrants further proteomics investigation with respect to the etiology of obesity and type 2 diabetes. | | | 17018519
|
Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Ramírez-Castillejo, Carmen, et al. Nat. Neurosci., 9: 331-9 (2006)
2005
Mostrar resumen
Adult stem cells are characterized by self-renewal and multilineage differentiation, and these properties seem to be regulated by signals from adjacent differentiated cell types and by extracellular matrix molecules, which collectively define the stem cell "niche." Self-renewal is essential for the lifelong persistence of stem cells, but its regulation is poorly understood. In the mammalian brain, neurogenesis persists in two germinal areas, the subventricular zone (SVZ) and the hippocampus, where continuous postnatal neuronal production seems to be supported by neural stem cells (NSCs). Here we show that pigment epithelium-derived factor (PEDF) is secreted by components of the murine SVZ and promotes self-renewal of adult NSCs in vitro. In addition, intraventricular PEDF infusion activated slowly dividing stem cells, whereas a blockade of endogenous PEDF decreased their cycling. These data demonstrate that PEDF is a niche-derived regulator of adult NSCs and provide evidence for a role for PEDF protein in NSC maintenance. | | | 16491078
|