Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq Dan Dominissini 1 , Sharon Moshitch-Moshkovitz, Schraga Schwartz, Mali Salmon-Divon, Lior Ungar, Sivan Osenberg, Karen Cesarkas, Jasmine Jacob-Hirsch, Ninette Amariglio, Martin Kupiec, Rotem Sorek, Gideon Rechavi Nature
485(7397)
201-6
2011
Mostrar resumen
An extensive repertoire of modifications is known to underlie the versatile coding, structural and catalytic functions of RNA, but it remains largely uncharted territory. Although biochemical studies indicate that N(6)-methyladenosine (m(6)A) is the most prevalent internal modification in messenger RNA, an in-depth study of its distribution and functions has been impeded by a lack of robust analytical methods. Here we present the human and mouse m(6)A modification landscape in a transcriptome-wide manner, using a novel approach, m(6)A-seq, based on antibody-mediated capture and massively parallel sequencing. We identify over 12,000 m(6)A sites characterized by a typical consensus in the transcripts of more than 7,000 human genes. Sites preferentially appear in two distinct landmarks--around stop codons and within long internal exons--and are highly conserved between human and mouse. Although most sites are well preserved across normal and cancerous tissues and in response to various stimuli, a subset of stimulus-dependent, dynamically modulated sites is identified. Silencing the m(6)A methyltransferase significantly affects gene expression and alternative splicing patterns, resulting in modulation of the p53 (also known as TP53) signalling pathway and apoptosis. Our findings therefore suggest that RNA decoration by m(6)A has a fundamental role in regulation of gene expression. | 22575960
|
Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons Kate D Meyer 1 , Yogesh Saletore, Paul Zumbo, Olivier Elemento, Christopher E Mason, Samie R Jaffrey Cell
149(7)
1635-46
2011
Mostrar resumen
Methylation of the N(6) position of adenosine (m(6)A) is a posttranscriptional modification of RNA with poorly understood prevalence and physiological relevance. The recent discovery that FTO, an obesity risk gene, encodes an m(6)A demethylase implicates m(6)A as an important regulator of physiological processes. Here, we present a method for transcriptome-wide m(6)A localization, which combines m(6)A-specific methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-Seq). We use this method to identify mRNAs of 7,676 mammalian genes that contain m(6)A, indicating that m(6)A is a common base modification of mRNA. The m(6)A modification exhibits tissue-specific regulation and is markedly increased throughout brain development. We find that m(6)A sites are enriched near stop codons and in 3' UTRs, and we uncover an association between m(6)A residues and microRNA-binding sites within 3' UTRs. These findings provide a resource for identifying transcripts that are substrates for adenosine methylation and reveal insights into the epigenetic regulation of the mammalian transcriptome. | 22608085
|
Antibodies specific for N6-methyladenosine react with intact snRNPs U2 and U4/U6 P Bringmann, R Lührmann FEBS Lett
213(2)
309-15
1987
Mostrar resumen
Antibodies specific for N6-methyladenosine (m6A) were elicited in rabbits and used to study the accessibility in intact snRNPs of the m6A residues present in the snRNAs U2, U4 and U6. The antibody quantitatively precipitates snRNPs U2 and U4/U6 from total nucleoplasmic snRNPs U1-U6 isolated from HeLa cells, which demonstrates that the m6A residues of the respective snRNAs are not protected by snRNP proteins in the snRNP particles. While the anti-m6A IgG does not react at all with U5 RNPs lacking m6A, a significant amount of U1 RNPs was co-precipitated despite the fact that U1 RNA does not contain m6A either. Since anti-m6A IgG does not react with purified U1 RNPs and co-precipitation of U1 RNPs is dependent on the presence of U2 RNPs but not of U4/U6 RNPs, these data indicate an interaction between snRNPs U1 and U2 in vitro. The anti-m6A precipitation pattern described above was also observed with snRNPs isolation from mouse Ehrlich ascites tumor cells, indicating similar three-dimensional arrangements of snRNAs in homologous snRNP particles from different organisms. | 2951275
|