Amyloid β-protein oligomers upregulate the β-secretase, BACE1, through a post-translational mechanism involving its altered subcellular distribution in neurons. Mamada, N; Tanokashira, D; Hosaka, A; Kametani, F; Tamaoka, A; Araki, W Molecular brain
8
73
2015
Mostrar resumen
β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) is a membrane-bound aspartyl protease that initiates amyloid β-protein (Aβ) generation. Aberrant elevation of BACE1 levels in brains of Alzheimer's disease (AD) patients may involve Aβ. In the present study, we used a neuron culture model system to investigate the effects of Aβ on BACE1 expression as well as the underlying mechanisms.Rat primary cortical neurons were treated with relatively low concentrations (2.5 μM) of Aβ42 oligomers (Aβ-O) or fibrils (Aβ-F) for 2-3 days. Aβ-O induced a significant increase in protein levels of BACE1, while Aβ-F only had a marginal effect. Levels of amyloid precursor protein (APP) and the major α-secretase, ADAM10, remained unaltered upon treatment with both types of Aβ. Aβ-O treatment resulted in activation of eIF2α and caspase 3 in a time-dependent manner, with no changes in the endoplasmic reticulum (ER) stress marker, GRP78, indicating that a typical ER stress response is not induced under our experimental conditions. Furthermore, Aβ-O did not affect BACE1 mRNA expression but augmented the levels of exogenous BACE1 expressed via recombinant adenoviruses, indicating regulation of BACE1 protein expression, not at the transcriptional or translational but the post-translational level. Immunocytochemical analysis revealed that Aβ-O causes a significant increase in BACE1 immunoreactivity in neurites (both axons and dendrites), but not soma of neurons; this change appears relevant to the mechanism of Aβ-O-induced BACE1 elevation, which may involve impairment of BACE1 trafficking and degradation. In contrast, Aβ-O had no effect on APP immunoreactivity.Our results collectively suggest that Aβ oligomers induce BACE1 elevation via a post-translational mechanism involving its altered subcellular distribution in neurons, which possibly triggers a vicious cycle of Aβ generation, thus contributing to the pathogenetic mechanism of AD. | 26552445
|
Neuronal β-amyloid generation is independent of lipid raft association of β-secretase BACE1: analysis with a palmitoylation-deficient mutant. Motoki, K; Kume, H; Oda, A; Tamaoka, A; Hosaka, A; Kametani, F; Araki, W Brain and behavior
2
270-82
2011
Mostrar resumen
β-Secretase, BACE1 is a neuron-specific membrane-associated protease that cleaves amyloid precursor protein (APP) to generate β-amyloid protein (Aβ). BACE1 is partially localized in lipid rafts. We investigated whether lipid raft localization of BACE1 affects Aβ production in neurons using a palmitoylation-deficient mutant and further analyzed the relationship between palmitoylation of BACE1 and its shedding and dimerization. We initially confirmed that BACE1 is mainly palmitoylated at four C-terminal cysteine residues in stably transfected neuroblastoma cells. We found that raft localization of mutant BACE1 lacking the palmitoylation modification was markedly reduced in comparison to wild-type BACE1 in neuroblastoma cells as well as rat primary cortical neurons expressing BACE1 via recombinant adenoviruses. In primary neurons, expression of wild-type and mutant BACE1 enhanced production of Aβ from endogenous or overexpressed APP to similar extents with the β-C-terminal fragment (β-CTF) of APP mainly distributed in nonraft fractions. Similarly, β-CTF was recovered mainly in nonraft fractions of neurons expressing Swedish mutant APP only. These results show that raft association of BACE1 does not influence β-cleavage of APP and Aβ production in neurons, and support the view that BACE1 cleaves APP mainly in nonraft domains. Thus, we propose a model of neuronal Aβ generation involving mobilization of β-CTF from nonraft to raft domains. Additionally, we obtained data indicating that palmitoylation plays a role in BACE1 shedding but not dimerization. | 22741101
|
Expression of reticulon 3 in Alzheimer's disease brain. H Kume,Y Konishi,K S Murayama,F Kametani,W Araki Neuropathology and applied neurobiology
35
2009
Mostrar resumen
Reticulon 3 (RTN3), a member of the reticulon family of proteins, interacts with the beta-secretase, beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1), and inhibits its activity to produce beta-amyloid protein. The aim of the present study was to clarify the biological role of RTN3 in the brain and its potential involvement in the neuropathology of Alzheimer's disease (AD). Artículo Texto completo | 19284479
|
Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Vassar, R, et al. Science, 286: 735-41 (1999)
1998
Mostrar resumen
Cerebral deposition of amyloid beta peptide (Abeta) is an early and critical feature of Alzheimer's disease. Abeta generation depends on proteolytic cleavage of the amyloid precursor protein (APP) by two unknown proteases: beta-secretase and gamma-secretase. These proteases are prime therapeutic targets. A transmembrane aspartic protease with all the known characteristics of beta-secretase was cloned and characterized. Overexpression of this protease, termed BACE (for beta-site APP-cleaving enzyme) increased the amount of beta-secretase cleavage products, and these were cleaved exactly and only at known beta-secretase positions. Antisense inhibition of endogenous BACE messenger RNA decreased the amount of beta-secretase cleavage products, and purified BACE protein cleaved APP-derived substrates with the same sequence specificity as beta-secretase. Finally, the expression pattern and subcellular localization of BACE were consistent with that expected for beta-secretase. Future development of BACE inhibitors may prove beneficial for the treatment of Alzheimer's disease. | 10531052
|
Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity. Yan, R, et al. Nature, 402: 533-7 (1999)
1998
Mostrar resumen
Mutations in the gene encoding the amyloid protein precursor (APP) cause autosomal dominant Alzheimer's disease. Cleavage of APP by unidentified proteases, referred to as beta- and gamma-secretases, generates the amyloid beta-peptide, the main component of the amyloid plaques found in Alzheimer's disease patients. The disease-causing mutations flank the protease cleavage sites in APP and facilitate its cleavage. Here we identify a new membrane-bound aspartyl protease (Asp2) with beta-secretase activity. The Asp2 gene is expressed widely in brain and other tissues. Decreasing the expression of Asp2 in cells reduces amyloid beta-peptide production and blocks the accumulation of the carboxy-terminal APP fragment that is created by beta-secretase cleavage. Solubilized Asp2 protein cleaves a synthetic APP peptide substrate at the beta-secretase site, and the rate of cleavage is increased tenfold by a mutation associated with early-onset Alzheimer's disease in Sweden. Thus, Asp2 is a new protein target for drugs that are designed to block the production of amyloid beta-peptide peptide and the consequent formation of amyloid plaque in Alzheimer's disease. | 10591213
|
Purification and cloning of amyloid precursor protein beta-secretase from human brain. Sinha, S, et al. Nature, 402: 537-40 (1999)
1998
Mostrar resumen
Proteolytic processing of the amyloid precursor protein (APP) generates amyloid beta (Abeta) peptide, which is thought to be causal for the pathology and subsequent cognitive decline in Alzheimer's disease. Cleavage by beta-secretase at the amino terminus of the Abeta peptide sequence, between residues 671 and 672 of APP, leads to the generation and extracellular release of beta-cleaved soluble APP, and a corresponding cell-associated carboxy-terminal fragment. Cleavage of the C-terminal fragment by gamma-secretase(s) leads to the formation of Abeta. The pathogenic mutation K670M671-->N670L671 at the beta-secretase cleavage site in APP, which was discovered in a Swedish family with familial Alzheimer's disease, leads to increased beta-secretase cleavage of the mutant substrate. Here we describe a membrane-bound enzyme activity that cleaves full-length APP at the beta-secretase cleavage site, and find it to be the predominant beta-cleavage activity in human brain. We have purified this enzyme activity to homogeneity from human brain using a new substrate analogue inhibitor of the enzyme activity, and show that the purified enzyme has all the properties predicted for beta-secretase. Cloning and expression of the enzyme reveals that human brain beta-secretase is a new membrane-bound aspartic proteinase. | 10591214
|