A Novel Double Mutation in the ABCD1 Gene in a Patient with X-linked Adrenoleukodystrophy: Analysis of the Stability and Function of the Mutant ABCD1 Protein. Morita, M; Kobayashi, J; Yamazaki, K; Kawaguchi, K; Honda, A; Sugai, K; Shimozawa, N; Koide, R; Imanaka, T JIMD reports
10
95-102
2013
Mostrar resumen
We diagnosed an adrenomyeloneuropathy (AMN) patient with a double novel missense mutation, c.284Cgreater than A (p.A95D) and c.290Agreater than T (p.H97L) in a single ABCD1 allele. In skin fibroblasts from the patient, no ABCD1 protein was detected by immunoblot analysis, and the C24:0 β-oxidation activity was decreased to a level at which the ABCD1 protein was absent. To determine the responsible gene mutation in the patient, we constructed three kinds of mutated ABCD1 gene expression vectors (c.284Cgreater than A, c.290Agreater than T or c.284Cgreater than A/c.290Agreater than T) and transfected them into CHO cells stably expressing GFP-SKL (CHO/GFP-SKL cells) or CADDS fibroblasts lacking the ABCD1 gene. ABCD1 (p.H97L) displayed the correct peroxisomal localization in CHO/GFP-SKL cells, but ABCD1 (p.A95D) and ABCD1 (p.A95D/p.H97L) were diffuse in the cytosol. Furthermore, ABCD1 (p.H97L) was detected by immunoblot analysis and restored the C24:0 β-oxidation activity in the CADDS fibroblasts, as the wild type ABCD1 did. On the other hand, ABCD1 (p.A95D) and ABCD1 (p.A95D/p.H97L) were not detected and the C24:0 β-oxidation activity was not restored. These results clearly show that c.284Cgreater than A is the responsible gene mutation, whereas c.290Agreater than T is a novel polymorphism. | 23430809
|
Genomic profiling identifies novel mutations and SNPs in ABCD1 gene: a molecular, biochemical and clinical analysis of X-ALD cases in India. Kumar, N; Taneja, KK; Kalra, V; Behari, M; Aneja, S; Bansal, SK PloS one
6
e25094
2010
Mostrar resumen
X-linked adrenoleukodystrophy (X-ALD) affects the nervous system white matter and adrenal cortex secondary to mutations in the ABCD1 gene that encode the peroxisomal membrane protein. We conducted a genomic and protein expression study of susceptibility gene with its clinical and biochemical analysis. To the best of our knowledge this is the first preliminary comprehensive study in Indian population that identified novel mutations and SNPs in a relatively large group. We screened 17 Indian indigenous X-linked adrenoleukodystrophy cases and 70 controls for mutations and SNPs in the exonic regions (including flanking regions) of ABCD1 gene by direct sequencing with ABI automated sequencer along with Western blot analysis of its endogenous protein, ALDP, levels in peripheral blood mononuclear cells. Single germ line mutation was identified in each index case in ABCD1 gene. We detected 4 novel mutations (2 missense and 2 deletion/insertion) and 3 novel single nucleotide polymorphisms. We observed a variable protein expression in different patients. These findings were further extended to biochemical and clinical observations as it occurs with great clinical expression variability. This is the first major study in this population that presents a different molecular genetic spectrum as compared to Caucasian population due to geographical distributions of ethnicity of patients. It enhances our knowledge of the causative mutations of X-ALD that grants holistic base to develop effective medicine against X-ALD. Artículo Texto completo | 21966424
|
Adrenoleukodystrophy: subcellular localization and degradation of adrenoleukodystrophy protein (ALDP/ABCD1) with naturally occurring missense mutations. Norimasa Takahashi, Masashi Morita, Takanori Maeda, Yuta Harayama, Nobuyuki Shimozawa, Yasuyuki Suzuki, Hirokazu Furuya, Ryuichiro Sato, Yoshinori Kashiwayama, Tsuneo Imanaka Journal of neurochemistry
101
1632-43
2007
Mostrar resumen
Mutation in the X-chromosomal adrenoleukodystrophy gene (ALD; ABCD1) leads to X-linked adrenoleukodystrophy (X-ALD), a severe neurodegenerative disorder. The encoded adrenoleukodystrophy protein (ALDP/ABCD1) is a half-size peroxisomal ATP-binding cassette protein of 745 amino acids in humans. In this study, we chose nine arbitrary mutant human ALDP forms (R104C, G116R, Y174C, S342P, Q544R, S606P, S606L, R617H, and H667D) with naturally occurring missense mutations and examined the intracellular behavior. When expressed in X-ALD fibroblasts lacking ALDP, the expression level of mutant His-ALDPs (S606L, R617H, and H667D) was lower than that of wild type and other mutant ALDPs. Furthermore, mutant ALDP-green fluorescence proteins (S606L and H667D) stably expressed in CHO cells were not detected due to rapid degradation. Interestingly, the wild type ALDP co-expressed in these cells also disappeared. In the case of X-ALD fibroblasts from an ALD patient (R617H), the mutant ALDP was not detected in the cells, but appeared upon incubation with a proteasome inhibitor. When CHO cells expressing mutant ALDP-green fluorescence protein (H667D) were cultured in the presence of a proteasome inhibitor, both the mutant and wild type ALDP reappeared. In addition, mutant His-ALDP (Y174C), which has a mutation between transmembrane domain 2 and 3, did not exhibit peroxisomal localization by immunofluorescense study. These results suggest that mutant ALDPs, which have a mutation in the COOH-terminal half of ALDP, including S606L, R617H, and H667D, were degraded by proteasomes after dimerization. Further, the region between transmembrane domain 2 and 3 is important for the targeting of ALDP to the peroxisome. | 17542813
|
Identification of seven novel mutations in ABCD1 by a DHPLC-based assay in Italian patients with X-linked adrenoleukodystrophy. Montagna, Giorgia, et al. Hum. Mutat., 25: 222 (2005)
2004
Mostrar resumen
We report the molecular findings in 14 patients (12 families) with X-linked adrenoleukodystrophy (X-ALD, MIM# 300100), a well-defined peroxisomal disorder attributed to mutations in the ABCD1 gene on chromosome Xq28. With the aims of determining the spectrum of mutations and developing an efficient molecular genetic test for analysis of at-risk women whose carrier status is unknown, and to offer molecular confirmation of their status to obligate heterozygotes, regardless of their clinical status, we carried out molecular screening by setting up a denaturing high-performance liquid chromatography (DHPLC)-based protocol. We identified eleven hemizygous base changes in ABCD1, including seven new mutations (c.145underscore;146ins4, c.264C>G, c.919C>T, c.994C>T, c.1027G>A, c.1508T>C, and c.1540A>C, resulting in the p.Pro193fs, p.Cys88Trp, p.Gln307X, p.Gln332X, p.Gly343Ser, p.Leu503Pro, and p.Ser514Arg changes, respectively). Adding new variants to the repertoire of ABCD1 mutations in X-ALD, our data provide an efficient, cost-effective, and reliable DHPLC detection protocol for mutation screening of X-ALD families. | 15643618
|
The TRIM37 gene encodes a peroxisomal RING-B-box-coiled-coil protein: classification of mulibrey nanism as a new peroxisomal disorder. Kallijärvi, J; Avela, K; Lipsanen-Nyman, M; Ulmanen, I; Lehesjoki, AE American journal of human genetics
70
1215-28
2002
Mostrar resumen
Mulibrey nanism is a rare growth disorder of prenatal onset caused by mutations in the TRIM37 gene, which encodes a RING-B-box-coiled-coil protein. The pathogenetic mechanisms of mulibrey nanism are unknown. We have used transiently transfected cells and antibodies raised against the predicted TRIM37 protein to characterize the TRIM37 gene product and to determine its intracellular localization. We show that the human TRIM37 cDNA encodes a peroxisomal protein with an apparent molecular weight of 130 kD. Peroxisomal localization is compromised in mutant protein representing the major Finnish TRIM37 mutation but is retained in the protein representing the minor Finnish mutation. Colocalization of endogenous TRIM37 with peroxisomal markers was observed by double immunofluorescence staining in HepG2 and human intestinal smooth muscle cell lines. In human tissue sections, TRIM37 shows a granular cytoplasmic pattern. Endogenous TRIM37 is not imported into peroxisomes in peroxin 1 (PEX1(-/-)) and peroxin 5 (PEX5(-/-)) mutant fibroblasts but is imported normally in peroxin 7 (PEX7(-/-)) deficient fibroblasts, giving further evidence for a peroxisomal localization of TRIM37. Fibroblasts derived from patients with mulibrey nanism lack C-terminal TRIM37 immunoreactivity but stain normally for both peroxisomal matrix and membrane markers, suggesting apparently normal peroxisome biogenesis in patient fibroblasts. Taken together, this molecular evidence unequivocally indicates that TRIM37 is located in the peroxisomes, and Mulibrey nanism thus can be classified as a new peroxisomal disorder. Artículo Texto completo | 11938494
|
Mouse very long-chain acyl-CoA synthetase in X-linked adrenoleukodystrophy. Heinzer, Ann K, et al. J. Biol. Chem., 277: 28765-73 (2002)
2002
Mostrar resumen
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by accumulation of very long-chain fatty acids (VLCFA). This accumulation has been attributed to decreased VLCFA beta-oxidation and peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity. The X-ALD gene, ABCD1, encodes a peroxisomal membrane ATP binding cassette transporter, ALDP, that is hypothesized to affect VLCS activity in peroxisomes by direct interaction with the VLCS enzyme. Recently, a VLCS gene that encodes a protein with significant sequence identity to known rat and human peroxisomal VLCS protein has been identified in mice. We find that the mouse VLCS gene (Vlcs) encodes an enzyme (Vlcs) with VLCS activity that localizes to peroxisomes and is expressed in X-ALD target tissues. We show that the expression of Vlcs in the peroxisomes of X-ALD mouse fibroblasts improves VLCFA beta-oxidation in these cells, implying a role for this enzyme in the biochemical abnormality of X-ALD. X-ALD mice, which accumulate VLCFA in tissues, show no change in the expression of Vlcs, the subcellular localization of Vlcs, or general peroxisomal VLCS activity. These observations imply that ALDP is not necessary for the proper expression or localization of Vlcs protein, and the control of VLCFA levels does not depend on the direct interaction of Vlcs and ALDP. | 12048192
|
A close relative of the adrenoleukodystrophy (ALD) gene codes for a peroxisomal protein with a specific expression pattern. Lombard-Platet, G, et al. Proc. Natl. Acad. Sci. U.S.A., 93: 1265-9 (1996)
1996
Mostrar resumen
Adrenoleukodystrophy (ALD), a severe demyelinating disease, is caused by mutations in a gene coding for a peroxisomal membrane protein (ALDP), which belongs to the superfamily of ATP binding cassette (ABC) transporters and has the structure of a half transporter. ALDP showed 38% sequence identity with another peroxisomal membrane protein, PMP70, up to now its closest homologue. We describe here the cloning and characterization of a mouse ALD-related gene (ALDR), which codes for a protein with 66% identity with ALDP and shares the same half transporter structure. The ALDR protein was overexpressed in COS cells and was found to be associated with the peroxisomes. The ALD and ALDR genes show overlapping but clearly distinct expression patterns in mouse and may thus play similar but nonequivalent roles. The ALDR gene, which appears highly conserved in man, is a candidate for being a modifier gene that could account for some of the extreme phenotypic variability of ALD. The ALDR gene is also a candidate for being implicated in one of the complementation groups of Zellweger syndrome, a genetically heterogeneous disorder of peroxisome biogenesis, rare cases of which were found to be associated with mutations in the PMP70 (PXMP1) gene. | 8577752
|
X-linked adrenoleukodystrophy. Aubourg, P and Mandel, J L Ann. N. Y. Acad. Sci., 804: 461-76 (1996)
1996
| 8993565
|
The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. Mosser, J, et al. Hum. Mol. Genet., 3: 265-71 (1994)
1993
Mostrar resumen
Adrenoleukodystrophy is a severe genetic demyelinating disease associated with an impairment of beta-oxidation of very long chain fatty acids (VLCFA) in peroxisomes. Earlier studies had suggested that a deficiency in VLCFA CoA synthetase was the primary defect. A candidate adrenoleukodystrophy gene has recently been cloned and was found unexpectedly to encode a putative ATP-binding cassette transporter. We have raised monoclonal antibodies against this protein, that detect a 75kDa band. This protein was absent in several patients with adrenoleukodystrophy. Immunofluorescence and immunoelectron microscopy showed that the adrenoleukodystrophy protein (ALDP) is associated with the peroxisomal membrane. Distinct immunofluorescence patterns were observed in cell lines from patients with Zellweger syndrome (a peroxisomal biogenesis disorder) belonging to different complementation groups. | 8004093
|