Millipore Sigma Vibrant Logo
 

guinea+pig+anti+glucagon


10 Results Advanced Search  
Showing
Products (0)
Documents (10)
Site Content (0)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • The L6 domain tetraspanin Tm4sf4 regulates endocrine pancreas differentiation and directed cell migration. 21750032

    The homeodomain transcription factor Nkx2.2 is essential for pancreatic development and islet cell type differentiation. We have identified Tm4sf4, an L6 domain tetraspanin family member, as a transcriptional target of Nkx2.2 that is greatly upregulated during pancreas development in Nkx2.2(-/-) mice. Tetraspanins and L6 domain proteins recruit other membrane receptors to form active signaling centers that coordinate processes such as cell adhesion, migration and differentiation. In this study, we determined that Tm4sf4 is localized to the ductal epithelial compartment and is prominent in the Ngn3(+) islet progenitor cells. We also established that pancreatic tm4sf4 expression and regulation by Nkx2.2 is conserved during zebrafish development. Loss-of-function studies in zebrafish revealed that tm4sf4 inhibits α and β cell specification, but is necessary for ε cell fates. Thus, Tm4sf4 functional output opposes that of Nkx2.2. Further investigation of how Tm4sf4 functions at the cellular level in vitro showed that Tm4sf4 inhibits Rho-activated cell migration and actin organization in a ROCK-independent fashion. We propose that the primary role of Nkx2.2 is to inhibit Tm4sf4 in endocrine progenitor cells, allowing for delamination, migration and/or appropriate cell fate decisions. Identification of a role for Tm4sf4 during endocrine differentiation provides insight into islet progenitor cell behaviors and potential targetable regenerative mechanisms.
    Document Type:
    Reference
    Product Catalog Number:
    ECM508
    Product Catalog Name:
    QCM Chemotaxis Cell Migration Assay, 24-well (8 µm), colorimetric
  • Immunohistochemical localization of monoamine oxidase type B in pancreatic islets of the rat. 15923360

    Monoamine oxidase (MAO) is regarded as a mitochondrial enzyme. This enzyme localizes on the outer membrane of mitochondria. There are two kinds of MAO isozymes, MAO type A (MAOA) and type B (MAOB). Previous studies have shown that MAOB activity is found in the pancreatic islets. This activity in the islets is increased by the fasting-induced decrease of plasma glucose level. Islet B cells contain monoamines in their secretory granules. These monoamines inhibit the secretion of insulin from the B cells. MAOB is active in degrading monoamines. Therefore, MAOB may influence the insulin-secretory process by regulating the stores of monoamines in the B cells. However, it has not been determined whether MAOB is localized on B cells or other cell types of the islets. In the present study, we used both double-labeling immunofluorescence histochemical and electron microscopic immunohistochemical methods to examine the subcellular localization of MAOB in rat pancreatic islets. MAOB was found in the mitochondrial outer membranes of glucagon-secreting cells (A cells), insulin-secreting cells (B cells), and some pancreatic polypeptide (PP)-secreting cells (PP cells), but no MAOB was found in somatostatin-secreting cells (D cells), nor in certain other PP cells. There were two kinds of mitochondria in pancreatic islet B cells: one contains MAOB on their outer membranes, but a substantial proportion of them lack this enzyme. Our findings indicate that pancreatic islet B cells contain MAOB on their mitochondrial outer membranes, and this enzyme may be involved in the regulation of monoamine levels and insulin secretion in the B cells.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Immunohistochemical localization of glucagon and pancreatic polypeptide on rat endocrine pancreas: coexistence in rat islet cells. 19683981

    We used immunofluorescence double staining method to investigate the cellular localization of glucagon and pancreatic polypeptide (PP) in rat pancreatic islets. The results showed that both A-cells (glucagon-secreting cells) and PP-cells (PP-secreting cells) were located in the periphery of the islets. However, A-cells and PP-cells had a different regional distribution. Most of A-cells were located in the splenic lobe but a few of them were in the duodenal lobe of the pancreas. In contrast, the majority of PP-cells were found in the duodenal lobe and a few of them were in the splenic lobe of the pancreas. Furthermore, we found that 67.74% A-cells had PP immunoreactivity, 70.92% PP-cells contained glucagon immunoreactivity with immunofluorescence double staining. Our data support the concept of a common precursor stem cell for pancreatic hormone-producing cells.
    Document Type:
    Reference
    Product Catalog Number:
    AP184F
    Product Catalog Name:
    Donkey Anti-Sheep IgG Antibody, FITC conjugate, Species Adsorbed
  • Pancreatic beta cells synthesize neuropeptide Y and can rapidly release peptide co-transmitters. 21559341

    In addition to polypeptide hormones, pancreatic endocrine cells synthesize a variety of bioactive molecules including classical transmitters and neuropeptides. While these co-transmitters are thought to play a role in regulating hormone release little is known about how their secretion is regulated. Here I investigate the synthesis and release of neuropeptide Y from pancreatic beta cells.NPY appears to be an authentic co-transmitter in neonatal, but not adult, beta cells because (1) early in mouse post-natal development, many beta cells are NPY-immunoreactive whereas no staining is observed in beta cells from NPY knockout mice; (2) GFP-expressing islet cells from an NPY(GFP) transgenic mouse are insulin-ir; (3) single cell RT-PCR experiments confirm that the NPY(GFP) cells contain insulin mRNA, a marker of beta cells. The NPY-immunoreactivity previously reported in alpha and delta cells is therefore likely to be due to the presence of NPY-related peptides. INS-1 cells, a beta cell line, are also NPY-ir and contain NPY mRNA. Using the FMRFamide tagging technique, NPY secretion was monitored from INS-1 beta cells with high temporal resolution. Peptide release was evoked by brief depolarizations and was potentiated by activators of adenylate cyclase and protein kinase A. Following a transient depolarization, NPY-containing dense core granules fused with the cell membrane and discharged their contents within a few milliseconds.These results indicate that after birth, NPY expression in pancreatic islets is restricted to neonatal beta cells. The presence of NPY suggests that peptide co-transmitters could mediate rapid paracrine or autocrine signaling within the endocrine pancreas. The FMRFamide tagging technique may be useful in studying the release of other putative islet co-transmitters in real time.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • DsAAV8-mediated expression of glucagon-like peptide-1 in pancreatic beta-cells ameliorates streptozotocin-induced diabetes. 19865180

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that performs a wide array of well-characterized antidiabetic actions, including stimulation of glucose-dependent insulin secretion, upregulation of insulin gene expression and improvements in beta-cell survival. GLP-1-receptor agonists have been developed for treatment of diabetes; however, the short biological half-lives of these peptide-based therapeutics requires that frequent injections be administered to maintain sufficient circulating levels. Thus, novel methods of delivering GLP-1 remain an important avenue of active research. It has recently been demonstrated that self-complimentary, double-stranded, adeno-associated virus serotype-8 (DsAAV8) can efficiently transduce pancreatic beta-cells in vivo, resulting in long-term transgene expression. In this study, we engineered a DsAAV8 vector containing a GLP-1 transgene driven by the mouse insulin-II promoter (MIP). Biological activity of the GLP-1 produced from this transgene was assessed using a luciferase-based bioassay. DsAAV8-MIP-GLP-1 was delivered via intraperitoneal injection and beta-cell damage induced by multiple low dose streptozotocin (STZ) administration. Glucose tolerance was assessed following intraperitoneal glucose injections and beta-cell proliferation measured by PCNA expression. Expression of GLP-1 in Min6 beta-cells resulted in glucose-dependent secretion of biologically active GLP-1. Intraperitoneal delivery of DsAAV8-MIP-GLP-1 to mice led to localized GLP-1 expression in beta-cells and protection against development of diabetes induced by multiple low-dose STZ administration. This protection was associated with significant increase in beta-cell proliferation. Results from this study indicate that expression and secretion of GLP-1 from beta-cells in vivo via DsAAV8 represents a novel therapeutic strategy for treatment of diabetes.
    Document Type:
    Reference
    Product Catalog Number:
    GLP1T-36HK
    Product Catalog Name:
    Glucagon Like Peptide-1 (Total) RIA
  • Pim3 negatively regulates glucose-stimulated insulin secretion. 21099329

    Pancreatic β-cell response to glucose stimulation is governed by tightly regulated signaling pathways which have not been fully characterized. A screen for novel signaling intermediates identified Pim3 as a glucose-responsive gene in the β cell, and here, we characterize its role in the regulation of β-cell function. Pim3 expression in the β-cell was first observed through microarray analysis on glucose-stimulated murine insulinoma (MIN6) cells where expression was strongly and transiently induced. In the pancreas, Pim3 expression exhibited similar dynamics and was restricted to the β cell. Perturbation of Pim3 function resulted in enhanced glucose-stimulated insulin secretion, both in MIN6 cells and in isolated islets from Pim3-/- mice, where the augmentation was specifically seen in the second phase of secretion. Consequently, Pim3-/- mice displayed an increased glucose tolerance in vivo. Interestingly, Pim3-/- mice also exhibited increased insulin sensitivity. Glucose stimulation of isolated Pim3-/- islets resulted in increased phosphorylation of ERK1/2, a kinase involved in regulating β-cell response to glucose. Pim3 was also found to physically interact with SOCS6 and SOCS6 levels were strongly reduced in Pim3-/- islets. Overexpression of SOCS6 inhibited glucose-induced ERK1/2 activation, strongly suggesting that Pim3 regulates ERK1/2 activity through SOCS6. These data reveal that Pim3 is a novel glucose-responsive gene in the β cell that negatively regulates insulin secretion by inhibiting the activation of ERK1/2, and through its effect on insulin sensitivity, has potentially a more global function in glucose homeostasis.
    Document Type:
    Reference
    Product Catalog Number:
    14-155
    Product Catalog Name:
    Histone H1 Protein, 20 mg
  • Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and beta- ... 11916911

    The incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are responsible for >50% of nutrient-stimulated insulin secretion. After being released into the circulation, GIP and GLP-1 are rapidly inactivated by the circulating enzyme dipeptidyl peptidase IV (DP IV). The use of DP IV inhibitors to enhance these insulinotropic hormonal axes has proven effective on an acute scale in both animals and humans; however, the long-term effects of these compounds have yet to be determined. Therefore, we carried out the following study: two groups of fa/fa Zucker rats (n = 6 each) were treated twice daily for 3 months with the DP IV inhibitor P32/98 (20 mg.kg(-1).day(-1), p.o.). Monthly oral glucose tolerance tests (OGTTs), performed after drug washout, revealed a progressive and sustained improvement in glucose tolerance in the treated animals. After 12 weeks of treatment, peak OGTT blood glucose values in the treated animals averaged 8.5 mmol/l less than in the controls (12.0 +/- 0.7 vs. 20.5 +/- 1.3 mmol/l, respectively). Concomitant insulin determinations showed an increased early-phase insulin response in the treated group (43% increase). Furthermore, in response to an 8.8 mmol/l glucose perfusion, pancreata from controls showed no increase in insulin secretion, whereas pancreata from treated animals exhibited a 3.2-fold rise in insulin secretion, indicating enhanced beta-cell glucose responsiveness. Also, both basal and insulin-stimulated glucose uptake were increased in soleus muscle strips from the treated group (by 20 and 50%, respectively), providing direct evidence for an improvement in peripheral insulin sensitivity. In summary, long-term DP IV inhibitor treatment was shown to cause sustained improvements in glucose tolerance, insulinemia, beta-cell glucose responsiveness, and peripheral insulin sensitivity, novel effects that provide further support for the use of DP IV inhibitors in the treatment of diabetes.
    Document Type:
    Reference
    Product Catalog Number:
    EGLP-35K
    Product Catalog Name:
    Glucagon Like Peptide-1 (Active) ELISA
  • Zebrafish mnx1 controls cell fate choice in the developing endocrine pancreas. 21989909

    The vertebrate endocrine pancreas has the crucial function of maintaining blood sugar homeostasis. This role is dependent upon the development and maintenance of pancreatic islets comprising appropriate ratios of hormone-producing cells. In all vertebrate models studied, an initial precursor population of Pdx1-expressing endoderm cells gives rise to separate endocrine and exocrine cell lineages. Within the endocrine progenitor pool a variety of transcription factors influence cell fate decisions, such that hormone-producing differentiated cell types ultimately arise, including the insulin-producing beta cells and the antagonistically acting glucagon-producing alpha cells. In previous work, we established that the development of all pancreatic lineages requires retinoic acid (RA) signaling. We have used the zebrafish to uncover genes that function downstream of RA signaling, and here we identify mnx1 (hb9) as an RA-regulated endoderm transcription factor-encoding gene. By combining manipulation of gene function, cell transplantation approaches and transgenic reporter analysis we establish that Mnx1 functions downstream of RA within the endoderm to control cell fate decisions in the endocrine pancreas progenitor lineage. We confirm that Mnx1-deficient zebrafish lack beta cells, and, importantly, we make the novel observation that they concomitantly gain alpha cells. In Mnx1-deficient embryos, precursor cells that are normally destined to differentiate as beta cells instead take on an alpha cell fate. Our findings suggest that Mnx1 functions to promote beta and suppress alpha cell fates.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Maternal obesity accelerates fetal pancreatic beta-cell but not alpha-cell development in sheep: prenatal consequences. 19605766

    Maternal obesity affects offspring weight, body composition, and organ function, increasing diabetes and metabolic syndrome risk. We determined effects of maternal obesity and a high-energy diet on fetal pancreatic development. Sixty days prior to breeding, ewes were assigned to control [100% of National Research Council (NRC) recommendations] or obesogenic (OB; 150% NRC) diets. At 75 days gestation, OB ewes exhibited elevated insulin-to-glucose ratios at rest and during a glucose tolerance test, demonstrating insulin resistance compared with control ewes. In fetal studies, ewes ate their respective diets from 60 days before to 75 days after conception when animals were euthanized under general anesthesia. OB and control ewes increased in body weight by approximately 43% and approximately 6%, respectively, from diet initiation until necropsy. Although all organs were heavier in fetuses from OB ewes, only pancreatic weight increased as a percentage of fetal weight. Blood glucose, insulin, and cortisol were elevated in OB ewes and fetuses on day 75. Insulin-positive cells per unit pancreatic area were 50% greater in fetuses from OB ewes as a result of increased beta-cell mitoses rather than decreased programmed cell death. Lambs of OB ewes were born earlier but weighed the same as control lambs; however, their crown-to-rump length was reduced, and their fat mass was increased. We conclude that increased systemic insulin in fetuses from OB ewes results from increased glucose exposure and/or cortisol-induced accelerated fetal beta-cell maturation and may contribute to premature beta-cell function loss and predisposition to obesity and metabolic disease in offspring.
    Document Type:
    Reference
    Product Catalog Number:
    AP193P
    Product Catalog Name:
    Donkey Anti-Guinea Pig IgG Antibody, HRP conjugate, Species Adsorbed
  • «
  • <
  • 1
  • >
  • »