Poised chromatin and bivalent domains facilitate the mitosis-to-meiosis transition in the male germline. Sin, HS; Kartashov, AV; Hasegawa, K; Barski, A; Namekawa, SH BMC biology
13
53
2015
Show Abstract
The male germline transcriptome changes dramatically during the mitosis-to-meiosis transition to activate late spermatogenesis genes and to transiently suppress genes commonly expressed in somatic lineages and spermatogenesis progenitor cells, termed somatic/progenitor genes.These changes reflect epigenetic regulation. Induction of late spermatogenesis genes during spermatogenesis is facilitated by poised chromatin established in the stem cell phases of spermatogonia, whereas silencing of somatic/progenitor genes during meiosis and postmeiosis is associated with formation of bivalent domains which also allows the recovery of the somatic/progenitor program after fertilization. Importantly, during spermatogenesis mechanisms of epigenetic regulation on sex chromosomes are different from autosomes: X-linked somatic/progenitor genes are suppressed by meiotic sex chromosome inactivation without deposition of H3K27me3.Our results suggest that bivalent H3K27me3 and H3K4me2/3 domains are not limited to developmental promoters (which maintain bivalent domains that are silent throughout the reproductive cycle), but also underlie reversible silencing of somatic/progenitor genes during the mitosis-to-meiosis transition in late spermatogenesis. | | | 26198001
|
Ethanol exposure induces neonatal neurodegeneration by enhancing CB1R Exon1 histone H4K8 acetylation and up-regulating CB1R function causing neurobehavioral abnormalities in adult mice. Subbanna, S; Nagre, NN; Umapathy, NS; Pace, BS; Basavarajappa, BS The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP)
18
2015
Show Abstract
Ethanol exposure to rodents during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces long-term potentiation and memory deficits. However, the molecular mechanisms underlying these deficits are still poorly understood.In the present study, we explored the potential role of epigenetic changes at cannabinoid type 1 (CB1R) exon1 and additional CB1R functions, which could promote memory deficits in animal models of fetal alcohol spectrum disorder.We found that ethanol treatment of P7 mice enhances acetylation of H4 on lysine 8 (H4K8ace) at CB1R exon1, CB1R binding as well as the CB1R agonist-stimulated GTPγS binding in the hippocampus and neocortex, two brain regions that are vulnerable to ethanol at P7 and are important for memory formation and storage, respectively. We also found that ethanol inhibits cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation and activity-regulated cytoskeleton-associated protein (Arc) expression in neonatal and adult mice. The blockade or genetic deletion of CB1Rs prior to ethanol treatment at P7 rescued CREB phosphorylation and Arc expression. CB1R knockout mice exhibited neither ethanol-induced neurodegeneration nor inhibition of CREB phosphorylation or Arc expression. However, both neonatal and adult mice did exhibit enhanced CREB phosphorylation and Arc protein expression. P7 ethanol-treated adult mice exhibited impaired spatial and social recognition memory, which were prevented by the pharmacological blockade or deletion of CB1Rs at P7.Together, these findings suggest that P7 ethanol treatment induces CB1R expression through epigenetic modification of the CB1R gene, and that the enhanced CB1R function induces pCREB, Arc, spatial, and social memory deficits in adult mice. | | | 25609594
|
Characterization of BRD4 during mammalian postmeiotic sperm development. Bryant, JM; Donahue, G; Wang, X; Meyer-Ficca, M; Luense, LJ; Weller, AH; Bartolomei, MS; Blobel, GA; Meyer, RG; Garcia, BA; Berger, SL Molecular and cellular biology
35
1433-48
2015
Show Abstract
During spermiogenesis, the postmeiotic phase of mammalian spermatogenesis, transcription is progressively repressed as nuclei of haploid spermatids are compacted through a dramatic chromatin reorganization involving hyperacetylation and replacement of most histones with protamines. Although BRDT functions in transcription and histone removal in spermatids, it is unknown whether other BET family proteins play a role. Immunofluorescence of spermatogenic cells revealed BRD4 in a ring around the nuclei of spermatids containing hyperacetylated histones. The ring lies directly adjacent to the acroplaxome, the cytoskeletal base of the acrosome, previously linked to chromatin reorganization. The BRD4 ring does not form in acrosomal mutant mice. Chromatin immunoprecipitation followed by sequencing in spermatids revealed enrichment of BRD4 and acetylated histones at the promoters of active genes. BRD4 and BRDT show distinct and synergistic binding patterns, with a pronounced enrichment of BRD4 at spermatogenesis-specific genes. Direct association of BRD4 with acetylated H4 decreases in late spermatids as acetylated histones are removed from the condensing nucleus in a wave following the progressing acrosome. These data provide evidence of a prominent transcriptional role for BRD4 and suggest a possible removal mechanism for chromatin components from the genome via the progressing acrosome as transcription is repressed and chromatin is compacted during spermiogenesis. | Immunofluorescence | | 25691659
|
Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit. Puvvula, PK; Desetty, RD; Pineau, P; Marchio, A; Moon, A; Dejean, A; Bischof, O Nature communications
5
5323
2014
Show Abstract
Cellular senescence is a stable cell cycle arrest that limits the proliferation of pre-cancerous cells. Here we demonstrate that scaffold-attachment-factor A (SAFA) and the long noncoding RNA PANDA differentially interact with polycomb repressive complexes (PRC1 and PRC2) and the transcription factor NF-YA to either promote or suppress senescence. In proliferating cells, SAFA and PANDA recruit PRC complexes to repress the transcription of senescence-promoting genes. Conversely, the loss of SAFA-PANDA-PRC interactions allows expression of the senescence programme. Accordingly, we find that depleting either SAFA or PANDA in proliferating cells induces senescence. However, in senescent cells where PANDA sequesters transcription factor NF-YA and limits the expression of NF-YA-E2F-coregulated proliferation-promoting genes, PANDA depletion leads to an exit from senescence. Together, our results demonstrate that PANDA confines cells to their existing proliferative state and that modulating its level of expression can cause entry or exit from senescence. | | | 25406515
|
Histone methylation has dynamics distinct from those of histone acetylation in cell cycle reentry from quiescence. Mews, P; Zee, BM; Liu, S; Donahue, G; Garcia, BA; Berger, SL Molecular and cellular biology
34
3968-80
2014
Show Abstract
Cell growth is attuned to nutrient availability to sustain homeostatic biosynthetic processes. In unfavorable environments, cells enter a nonproliferative state termed quiescence but rapidly return to the cell cycle once conditions support energetic needs. Changing cellular metabolite pools are proposed to directly alter the epigenome via histone acetylation. Here we studied the relationship between histone modification dynamics and the dramatic transcriptional changes that occur during nutrient-induced cell cycle reentry from quiescence in the yeast Saccharomyces cerevisiae. SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry showed that histone methylation-in contrast to histone acetylation-is surprisingly static during quiescence exit. Chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq) revealed genome-wide shifts in histone acetylation at growth and stress genes as cells exit quiescence and transcription dramatically changes. Strikingly, however, the patterns of histone methylation remain intact. We conclude that the functions of histone methylation and acetylation are remarkably distinct during quiescence exit: acetylation rapidly responds to metabolic state, while methylation is independent. Thus, the initial burst of growth gene reactivation emerging from quiescence involves dramatic increases of histone acetylation but not of histone methylation. | | | 25154414
|
Ethanol induced acetylation of histone at G9a exon1 and G9a-mediated histone H3 dimethylation leads to neurodegeneration in neonatal mice. Subbanna, S; Nagre, NN; Shivakumar, M; Umapathy, NS; Psychoyos, D; Basavarajappa, BS Neuroscience
258
422-32
2014
Show Abstract
The transient exposure of immature rodents to ethanol during postnatal day 7 (P7), comparable to a time point within the third trimester of human pregnancy, induces neurodegeneration. However, the molecular mechanisms underlying the deleterious effects of ethanol on the developing brain are poorly understood. In our previous study, we showed that a high dose administration of ethanol at P7 enhances G9a and leads to caspase-3-mediated degradation of dimethylated H3 on lysine 9 (H3K9me2). In this study, we investigated the potential role of epigenetic changes at G9a exon1, G9a-mediated H3 dimethylation on neurodegeneration and G9a-associated proteins in the P7 brain following exposure to a low dose of ethanol. We found that a low dose of ethanol induces mild neurodegeneration in P7 mice, enhances specific acetylation of H3 on lysine 14 (H3K14ace) at G9a exon1, G9a protein levels, augments the dimethylation of H3K9 and H3 lysine 27 (H3K27me2). However, neither dimethylated H3K9 nor K27 underwent degradation. Pharmacological inhibition of G9a activity prior to ethanol treatment prevented H3 dimethylation and neurodegeneration. Further, our immunoprecipitation data suggest that G9a directly associates with DNA methyltransferase (DNMT3A) and methyl-CpG-binding protein 2 (MeCP2). In addition, DNMT3A and MeCP2 protein levels were enhanced by a low dose of ethanol that was shown to induce mild neurodegeneration. Collectively, these epigenetic alterations lead to association of G9a, DNMT3A and MeCP2 to form a larger repressive complex and have a significant role in low-dose ethanol-induced neurodegeneration in the developing brain. | Immunoprecipitation | | 24300108
|
Rational design and validation of a Tip60 histone acetyltransferase inhibitor. Gao, C; Bourke, E; Scobie, M; Famme, MA; Koolmeister, T; Helleday, T; Eriksson, LA; Lowndes, NF; Brown, JA Scientific reports
4
5372
2014
Show Abstract
Histone acetylation is required for many aspects of gene regulation, genome maintenance and metabolism and dysfunctional acetylation is implicated in numerous diseases, including cancer. Acetylation is regulated by histone acetyltransferases (HATs) and histone deacetylases and currently, few general HAT inhibitors have been described. We identified the HAT Tip60 as an excellent candidate for targeted drug development, as Tip60 is a key mediator of the DNA damage response and transcriptional co-activator. Our modeling of Tip60 indicated that the active binding pocket possesses opposite charges at each end, with the positive charges attributed to two specific side chains. We used structure based drug design to develop a novel Tip60 inhibitor, TH1834, to fit this specific pocket. We demonstrate that TH1834 significantly inhibits Tip60 activity in vitro and treating cells with TH1834 results in apoptosis and increased unrepaired DNA damage (following ionizing radiation treatment) in breast cancer but not control cell lines. Furthermore, TH1834 did not affect the activity of related HAT MOF, as indicated by H4K16Ac, demonstrating specificity. The modeling and validation of the small molecule inhibitor TH1834 represents a first step towards developing additional specific, targeted inhibitors of Tip60 that may lead to further improvements in the treatment of breast cancer. | Western Blotting | Chicken | 24947938
|
Lunasin sensitivity in non-small cell lung cancer cells is linked to suppression of integrin signaling and changes in histone acetylation. Inaba, J; McConnell, EJ; Davis, KR International journal of molecular sciences
15
23705-24
2014
Show Abstract
Lunasin is a plant derived bioactive peptide with both cancer chemopreventive and therapeutic activity. We recently showed lunasin inhibits non-small cell lung cancer (NSCLC) cell proliferation in a cell-line-specific manner. We now compared the effects of lunasin treatment of lunasin-sensitive (H661) and lunasin-insensitive (H1299) NSCLC cells with respect to lunasin uptake, histone acetylation and integrin signaling. Both cell lines exhibited changes in histone acetylation, with H661 cells showing a unique increase in H4K16 acetylation. Proximity ligation assays demonstrated lunasin interacted with integrins containing αv, α5, β1 and β3 subunits to a larger extent in the H661 compared to H1299 cells. Moreover, lunasin specifically disrupted the interaction of β1 and β3 subunits with the downstream signaling components phosphorylated Focal Adhesion Kinase (pFAK), Kindlin and Intergrin Linked Kinase in H661 cells. Immunoblot analyses demonstrated lunasin treatment of H661 resulted in reduced levels of pFAK, phosphorylated Akt and phosphorylated ERK1/2 whereas no changes were observed in H1299 cells. Silencing of αv expression in H661 cells confirmed signaling through integrins containing αv is essential for proliferation. Moreover, lunasin was unable to further inhibit proliferation in αv-silenced H661 cells. This indicates antagonism of integrin signaling via αv-containing integrins is an important component of lunasin's mechanism of action. | Western Blotting | | 25530619
|
Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Kaikkonen, MU; Spann, NJ; Heinz, S; Romanoski, CE; Allison, KA; Stender, JD; Chun, HB; Tough, DF; Prinjha, RK; Benner, C; Glass, CK Molecular cell
51
310-25
2013
Show Abstract
Recent studies suggest a hierarchical model in which lineage-determining factors act in a collaborative manner to select and prime cell-specific enhancers, thereby enabling signal-dependent transcription factors to bind and function in a cell-type-specific manner. Consistent with this model, TLR4 signaling primarily regulates macrophage gene expression through a pre-existing enhancer landscape. However, TLR4 signaling also induces priming of ∼3,000 enhancer-like regions de novo, enabling visualization of intermediates in enhancer selection and activation. Unexpectedly, we find that enhancer transcription precedes local mono- and dimethylation of histone H3 lysine 4 (H3K4me1/2). H3K4 methylation at de novo enhancers is primarily dependent on the histone methyltransferases Mll1, Mll2/4, and Mll3 and is significantly reduced by inhibition of RNA polymerase II elongation. Collectively, these findings suggest an essential role of enhancer transcription in H3K4me1/2 deposition at de novo enhancers that is independent of potential functions of the resulting eRNA transcripts. | | | 23932714
|
FOSL1 controls the assembly of endothelial cells into capillary tubes by direct repression of αv and β3 integrin transcription. Evellin, S; Galvagni, F; Zippo, A; Neri, F; Orlandini, M; Incarnato, D; Dettori, D; Neubauer, S; Kessler, H; Wagner, EF; Oliviero, S Molecular and cellular biology
33
1198-209
2013
Show Abstract
To form three-dimensional capillary tubes, endothelial cells must establish contacts with the extracellular matrix that provides signals for their proliferation, migration, and differentiation. The transcription factor Fosl1 plays a key role in the vasculogenic and angiogenic processes as Fosl1 knockout embryos die with vascular defects in extraembryonic tissues. Here, we show that Fosl1(-/-) embryonic stem cells differentiate into endothelial cells but fail to correctly assemble into primitive capillaries and to form tube-like structures. FOSL1 silencing affects in vitro angiogenesis, increases cell adhesion, and decreases cell mobility of primary human endothelial cells (HUVEC). We further show that FOSL1 is a repressor of αv and β3 integrin expression and that the down-modulation of αvβ3 rescues the angiogenic phenotype in FOSL1-silenced HUVEC, while the ectopic expression of αvβ3 alone reproduces the phenotypic alterations induced by FOSL1 knockdown. FOSL1 represses the transcription of both αv and β3 integrin genes by binding together with JunD to their proximal promoter via the transcription factor SP1. These data suggest that FOSL1-dependent negative regulation of αvβ3 expression on endothelial cells is required for endothelial assembly into vessel structures. | Western Blotting, Immunofluorescence | | 23319049
|