TREM2- and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1. Peng, Qisheng, et al. Sci Signal, 3: ra38 (2010)
2010
Show Abstract
The activation and fusion of macrophages and of osteoclasts require the adaptor molecule DNAX-activating protein of 12 kD (DAP12), which contains immunoreceptor tyrosine-based activation motifs (ITAMs). TREM2 (triggering receptor expressed on myeloid cells-2) is the main DAP12-associated receptor in osteoclasts and, similar to DAP12 deficiency, loss of TREM2 in humans leads to Nasu-Hakola disease, which is characterized by bone cysts and dementia. Furthermore, in vitro experiments have shown that deficiency in DAP12 or TREM2 leads to impaired osteoclast development and the formation of mononuclear osteoclasts. Here, we demonstrate that the ligation of TREM2 activated phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase 1 (ERK1) and ERK2, and the guanine nucleotide exchange factor Vav3; induced the mobilization of intracellular calcium (Ca(2+)) and the reorganization of actin; and prevented apoptosis. The signaling adaptor molecule DAP10 played a key role in the TREM2- and DAP12-dependent recruitment of PI3K to the signaling complex. Src homology 2 (SH2) domain-containing inositol phosphatase-1 (SHIP1) inhibited TREM2- and DAP12-induced signaling by binding to DAP12 in an SH2 domain-dependent manner and preventing the recruitment of PI3K to DAP12. These results demonstrate a previously uncharacterized interaction of SHIP1 with DAP12 that functionally limits TREM2- and DAP12-dependent signaling and identify a mechanism through which SHIP1 regulates key ITAM-containing receptors by directly blocking the binding and activation of PI3K. | 20484116
|
A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. Hsieh, Christine L, et al. J. Neurochem., 109: 1144-56 (2009)
2009
Show Abstract
Following neuronal injury, microglia initiate repair by phagocytosing dead neurons without eliciting inflammation. Prior evidence indicates triggering receptor expressed by myeloid cells-2 (TREM2) promotes phagocytosis and retards inflammation. However, evidence that microglia and neurons directly interact through TREM2 to orchestrate microglial function is lacking. We here demonstrate that TREM2 interacts with endogenous ligands on neurons. Staining with TREM2-Fc identified TREM2 ligands (TREM2-L) on Neuro2A cells and on cultured cortical and dopamine neurons. Apoptosis greatly increased the expression of TREM2-L. Furthermore, apoptotic neurons stimulated TREM2 signaling, and an anti-TREM2 mAb blocked stimulation. To examine the interaction between TREM2 and TREM2-L in phagocytosis, we studied BV2 microglial cells and their engulfment of apoptotic Neuro2A. One of our anti-TREM2 mAb, but not others, reduced engulfment, suggesting the presence of a functional site on TREM2 interacting with neurons. Further, Chinese hamster ovary cells transfected with TREM2 conferred phagocytic activity of neuronal cells demonstrating that TREM2 is both required and sufficient for competent uptake of apoptotic neuronal cells. Finally, while TREM2-L are expressed on neurons, TREM2 is not; in the brain, it is found on microglia. TREM2 and TREM2-L form a receptor-ligand pair connecting microglia with apoptotic neurons, directing removal of damaged cells to allow repair. | 19302484
|
TREM2, a DAP12-associated receptor, regulates osteoclast differentiation and function. Humphrey, Mary Beth, et al. J. Bone Miner. Res., 21: 237-45 (2006)
2006
Show Abstract
Deficiency of the signaling adapter protein DAP12 or its associated receptor TREM2 is associated with abnormal OC development in humans. Here we examine the role of TREM2 in mouse OC development and function, including migration and resorption in vitro. These results provide new evidence that TREM2 regulates OC function independent of its effects on multinucleated OC differentiation. | 16418779
|