Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment. Horrillo, A; Pezzolla, D; Fraga, MF; Aguilera, Y; Salguero-Aranda, C; Tejedo, JR; Martin, F; Bedoya, FJ; Soria, B; Hmadcha, A Cell death & disease
4
e570
2013
Show Abstract
Lineage commitment during embryonic stem cell (ESC) differentiation is controlled not only by a gamut of transcription factors but also by epigenetic events, mainly histone deacetylation and promoter DNA methylation. The DNA demethylation agent 5'-aza-2'-deoxycytidine (AzadC) has been widely described as an effective promoter of cardiomyogenic differentiation in various stem cell types. However, its toxicity and instability complicate its use. Therefore, the purpose of this study was to examine the effects of zebularine (1-(β-D-ribofuranosyl)-1,2-dihydropyrimidin-2-1), a stable and non-toxic DNA cytosine methylation inhibitor, on mouse ESC (mESC) differentiation. Herein, we report that treating embryoid bodies, generated from mESCs, with 30 μM zebularine for 7 days led to greater cell differentiation and induced the expression of several cardiac-specific markers that were detected using reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR, immunostaining and flow cytometry. Zebularine enhanced the expression of cardiac markers and the appearance of beating cells that responded to cardiac drugs, including ion channel blockers (diltiazem) and β-adrenergic stimulators (isoproterenol). Gene promoter methylation status was assessed using methylation-specific PCR (MSP) and validated by bisulfite sequencing analysis. Global gene expression profiling using microarrays showed that zebularine-differentiated cells are distinct from control ESCs. Pathway analysis revealed an enhancement of cellular processes such as embryonic development, cardiovascular system development and function. In addition, the whole-cell proteins exhibited different profiles as analyzed by two-dimensional differential-in-gel-electrophoresis. Our results indicate that zebularine regulates mesodermal differentiation of mESCs, controls promoter methylation of crucial cardiac genes and may help to improve cardiomyogenic differentiation. | 23559004
|
Myogenic differentiation in atrium-derived adult cardiac pluripotent cells and the transcriptional regulation of GATA4 and myogenin on ANP promoter. Kamrul Hasan M, Komoike Y, Tsunesumi SI, Nakao R, Nagao H, Matsuoka R, Kawaguchi N Genes Cells
2010
Show Abstract
We established cardiac pluripotent stem-like cells from the left atrium (LA-PCs) of adult rat hearts. These cells could differentiate not only into beating myocytes but also into cells of other lineages, including adipocytes and endothelial cells in the methylcellulose-based medium containing interleukin-3 (IL-3), interleukin-6 (IL-6), and stem cell factor (SCF). In particular, IL-3 and SCF contributed to the differentiation into cardiac troponin I-positive cells. Notably, small population of LA-PCs coexpressed GATA4 and myogenin, which are markers specific to cardiomyocytes and skeletal myocytes, respectively, and could differentiate into both cardiac and skeletal myocytes. Therefore, we investigated the involvement of these two tissue-specific transcription factors in the cardiac transcriptional activity. Coexpression of GATA4 and myogenin synergistically activated GATA4-specific promoter of the atrial natriuretic peptide gene. This combinatorial function was shown to be dependant on the GATA site, but independent of the E-box. The results of chromatin immunoprecipitation and electrophoretic mobility shift assays suggested that myogenin bound to GATA4 on the GATA elements and the C-terminal Zn-finger domain of GATA4 and the N-terminal region of myogenin were required for this synergistic activation of transcription. Taken together, these two transcription factors could be involved in the myogenesis of LA-PCs. | 20384792
|