Abelson interactor 1 (ABI1) and its interaction with Wiskott-Aldrich syndrome protein (wasp) are critical for proper eye formation in Xenopus embryos. Singh, A; Winterbottom, EF; Ji, YJ; Hwang, YS; Daar, IO The Journal of biological chemistry
288
14135-46
2013
Show Abstract
Abl interactor 1 (Abi1) is a scaffold protein that plays a central role in the regulation of actin cytoskeleton dynamics as a constituent of several key protein complexes, and homozygous loss of this protein leads to embryonic lethality in mice. Because this scaffold protein has been shown in cultured cells to be a critical component of pathways controlling cell migration and actin regulation at cell-cell contacts, we were interested to investigate the in vivo role of Abi1 in morphogenesis during the development of Xenopus embryos. Using morpholino-mediated translation inhibition, we demonstrate that knockdown of Abi1 in the whole embryo, or specifically in eye field progenitor cells, leads to disruption of eye morphogenesis. Moreover, signaling through the Src homology 3 domain of Abi1 is critical for proper movement of retinal progenitor cells into the eye field and their appropriate differentiation, and this process is dependent upon an interaction with the nucleation-promoting factor Wasp (Wiskott-Aldrich syndrome protein). Collectively, our data demonstrate that the Abi1 scaffold protein is an essential regulator of cell movement processes required for normal eye development in Xenopus embryos and specifically requires an Src homology 3 domain-dependent interaction with Wasp to regulate this complex morphogenetic process. | Western Blotting | 23558677
|
Oncogenic activation of c-ABL by mutation within its last exon. Goga, A, et al. Mol. Cell. Biol., 13: 4967-75 (1993)
1993
Show Abstract
The c-ABL proto-oncogene is a predominantly nuclear localized tyrosine kinase. A random mutagenesis scheme was used to isolate c-ABL mutants whose expression produced a transformed phenotype in rodent fibroblast cells. An in-frame deletion within the central region of the last exon was identified in one ABL mutant. The mechanism of c-ABL oncogenic activation by mutation within the last exon differs both functionally and structurally from those of v-ABL and BCR/ABL. This class of ABL mutants shows increased tyrosine phosphorylation of cellular proteins in vivo but low levels of autophosphorylation. Last-exon ABL mutants are distinguished from v-ABL or BCR/ABL by their inability to transform primary bone marrow cells or support the growth of transformed pre-B cells. These findings define a new mechanism of oncogenic activation for the ABL kinase through mutations in the last exon which do not require amino-terminal deletions or mutations within the src homology regions. | | 8336729
|