Millipore Sigma Vibrant Logo
 

ips


2123 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (405)
  • (97)
  • (36)
  • (10)
  • (7)
  • Show More
Can't Find What You're Looking For?
Contact Customer Service

 
  • iPS cell-derived cardiogenicity is hindered by sustained integration of reprogramming transgenes. 25077947

    Nuclear reprogramming inculcates pluripotent capacity by which de novo tissue differentiation is enabled. Yet, introduction of ectopic reprogramming factors may desynchronize natural developmental schedules. This study aims to evaluate the effect of imposed transgene load on the cardiogenic competency of induced pluripotent stem (iPS) cells.Targeted inclusion and exclusion of reprogramming transgenes (c-MYC, KLF4, OCT4, and SOX2) was achieved using a drug-inducible and removable cassette according to the piggyBac transposon/transposase system. Pulsed transgene overexpression, before iPS cell differentiation, hindered cardiogenic outcomes. Delayed in counterparts with maintained integrated transgenes, transgene removal enabled proficient differentiation of iPS cells into functional cardiac tissue. Transgene-free iPS cells generated reproducible beating activity with robust expression of cardiac α-actinin, connexin 43, myosin light chain 2a, α/β-myosin heavy chain, and troponin I. Although operational excitation-contraction coupling was demonstrable in the presence or absence of transgenes, factor-free derivatives exhibited an expedited maturing phenotype with canonical responsiveness to adrenergic stimulation.A disproportionate stemness load, caused by integrated transgenes, affects the cardiogenic competency of iPS cells. Offload of transgenes in engineered iPS cells ensures integrity of cardiac developmental programs, underscoring the value of nonintegrative nuclear reprogramming for derivation of competent cardiogenic regenerative biologics.
    Document Type:
    Reference
    Product Catalog Number:
    AB1728
    Product Catalog Name:
    Anti-Connexin 43 Antibody, CT, cytosolic
  • iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. 19696409

    RATIONALE: Induced pluripotent stem cells (iPS) allow derivation of pluripotent progenitors from somatic sources. Originally, iPS were induced by a stemness-related gene set that included the c-MYC oncogene. OBJECTIVE: Here, we determined from embryo to adult the cardiogenic proficiency of iPS programmed without c-MYC, a cardiogenicity-associated transcription factor. METHODS AND RESULTS: Transgenic expression of 3 human stemness factors SOX2, OCT4, and KLF4 here reset murine fibroblasts to the pluripotent ground state. Transduction without c-MYC reversed cellular ultrastructure into a primitive archetype and induced stem cell markers generating 3-germ layers, all qualifiers of acquired pluripotency. Three-factor induced iPS (3F-iPS) clones reproducibly demonstrated cardiac differentiation properties characterized by vigorous beating activity of embryoid bodies and robust expression of cardiac Mef2c, alpha-actinin, connexin43, MLC2a, and troponin I. In vitro isolated iPS-derived cardiomyocytes demonstrated functional excitation-contraction coupling. Chimerism with 3F-iPS derived by morula-stage diploid aggregation was sustained during prenatal heart organogenesis and contributed in vivo to normal cardiac structure and overall performance in adult tumor-free offspring. CONCLUSIONS: Thus, 3F-iPS bioengineered without c-MYC achieve highest stringency criteria for bona fide cardiogenesis enabling reprogrammed fibroblasts to yield de novo heart tissue compatible with native counterpart throughout embryological development and into adulthood.
    Document Type:
    Reference
    Product Catalog Number:
    MAB4301
    Product Catalog Name:
    Anti-Stage-Specific Embryonic Antigen-1 Antibody, clone MC-480
  • Generation of iPS cells using defined factors linked via the self-cleaving 2A sequences in a single open reading frame. 19238173

    Generation of induced pluripotent stem (iPS) cells from somatic cells has been achieved successfully by simultaneous viral transduction of defined reprogramming transcription factors (TFs). However, the process requires multiple viral vectors for gene delivery. As a result, generated iPS cells harbor numerous viral integration sites in their genomes. This can increase the probability of gene mutagenesis and genomic instability, and present significant barriers to both research and clinical application studies of iPS cells. In this paper, we present a simple lentivirus reprogramming system in which defined factors are fused in-frame into a single open reading frame (ORF) via self-cleaving 2A sequences. A GFP marker is placed downstream of the transgene to enable tracking of transgene expression. We demonstrate that this polycistronic expression system efficiently generates iPS cells. The generated iPS cells have normal karyotypes and are similar to mouse embryonic stem cells in morphology and gene expression. Moreover, they can differentiate into cell types of the three embryonic germ layers in both in vitro and in vivo assays. Remarkably, most of these iPS cells only harbor a single copy of viral vector. This system provides a valuable tool for generation of iPS cells, and our data suggest that the balance of expression of transduced reprogramming TFs in each cell is essential for the reprogramming process. More importantly, when delivered by non-integrating gene-delivery systems, this re-engineered single ORF will facilitate efficient generation of human iPS cells free of genetic modifications.
    Document Type:
    Reference
    Product Catalog Number:
    CBL171
    Product Catalog Name:
    Anti-Actin Antibody, smooth muscle, clone ASM-1
  • Efficient iPS cell production with the MyoD transactivation domain in serum-free culture. 22479546

    A major difficulty of producing induced pluripotent stem cells (iPSCs) has been the low efficiency of reprogramming differentiated cells into pluripotent cells. We previously showed that 5% of mouse embryonic fibroblasts (MEFs) were reprogrammed into iPSCs when they were transduced with a fusion gene composed of Oct4 and the transactivation domain of MyoD (called M(3)O), along with Sox2, Klf4 and c-Myc (SKM). In addition, M(3)O facilitated chromatin remodeling of pluripotency genes in the majority of transduced MEFs, including cells that did not become iPSCs. These observations suggested the possibility that more than 5% of cells had acquired the ability to become iPSCs given more favorable culture conditions. Here, we raised the efficiency of making mouse iPSCs with M(3)O-SKM to 26% by culturing transduced cells at low density in serum-free culture medium. In contrast, the efficiency increased from 0.1% to only 2% with the combination of wild-type Oct4 and SKM (OSKM) under the same culture condition. For human iPSCs, M(3)O-SKM achieved 7% efficiency under a similar serum-free culture condition, in comparison to 1% efficiency with OSKM. This study highlights the power of combining the transactivation domain of MyoD with a favorable culture environment.
    Document Type:
    Reference
    Product Catalog Number:
    SCR004
    Product Catalog Name:
    Alkaline Phosphatase Detection Kit
  • Genes inducing iPS phenotype play a role in hepatocyte survival and proliferation in vitro and liver regeneration in vivo. 21739467

    Reprogramming factors have been used to induce pluripotent stem cells as an alternative to somatic cell nuclear transfer technology in studies targeting disease models and regenerative medicine. The neuronal repressor RE-1 silencing transcription factor (REST) maintains self-renewal and pluripotency in mouse embryonic stem cells by maintaining the expression of Oct3/4, Nanog, and cMyc. We report that primary hepatocytes express REST and most of the reprogramming factors in culture. Their expression is up-regulated by hepatocyte growth factor (HGF) and epidermal growth factor (EGF). REST inhibition results in down-regulation of reprogramming factor expression, increased apoptosis, decreased proliferation, and cell death. The reprogramming factors are also up-regulated after 70% partial hepatectomy in vivo.These findings show that genes inducing the iPS phenotype, even though expressed at lower levels than embryonic stem cells, nonetheless are associated with control of apoptosis and cell proliferation in hepatocytes in culture and may play a role in such processes during liver regeneration.
    Document Type:
    Reference
    Product Catalog Number:
    07-579
    Product Catalog Name:
    Anti-REST Antibody