A monoclonal antibody based capture ELISA for botulinum neurotoxin serotype B: toxin detection in food. Stanker, LH; Scotcher, MC; Cheng, L; Ching, K; McGarvey, J; Hodge, D; Hnasko, R Toxins
5
2212-26
2013
Show Abstract
Botulism is a serious foodborne neuroparalytic disease, caused by botulinum neurotoxin (BoNT), produced by the anaerobic bacterium Clostridium botulinum. Seven toxin serotypes (A-H) have been described. The majority of human cases of botulism are caused by serotypes A and B followed by E and F. We report here a group of serotype B specific monoclonal antibodies (mAbs) capable of binding toxin under physiological conditions. Thus, they serve as capture antibodies for a sandwich (capture) ELISA. The antibodies were generated using recombinant peptide fragments corresponding to the receptor-binding domain of the toxin heavy chain as immunogen. Their binding properties suggest that they bind a complex epitope with dissociation constants (KD's) for individual antibodies ranging from 10 to 48 × 10-11 M. Assay performance for all possible combinations of capture-detector antibody pairs was evaluated and the antibody pair resulting in the lowest level of detection (L.O.D.), ~20 pg/mL was determined. Toxin was detected in spiked dairy samples with good recoveries at concentrations as low as 0.5 pg/mL and in ground beef samples at levels as low as 2 ng/g. Thus, the sandwich ELISA described here uses mAb for both the capture and detector antibodies (binding different epitopes on the toxin molecule) and readily detects toxin in those food samples tested. | 24253240
|
Detection of botulinum neurotoxin serotype B at sub mouse LD(50) levels by a sandwich immunoassay and its application to toxin detection in milk. Scotcher MC, Cheng LW, Stanker LH PLoS One
5
e11047.
2010
Show Abstract
BACKGROUND: Botulinum neurotoxin (BoNT), the causative agent of botulism, a serious neuroparylatic disease, is produced by the anaerobic bacterium Clostridium botulinum and consists of a family of seven serotypes (A-H). We previously reported production of high-affinity monoclonal antibodies to BoNT serotype A. Full Text Article | 20548779
|
Conformation-dependent high-affinity monoclonal antibodies to prion proteins. Larry H Stanker,Ana V Serban,Elisa Cleveland,Robert Hnasko,Azucena Lemus,Jiri Safar,Stephen J DeArmond,Stanley B Prusiner Journal of immunology (Baltimore, Md. : 1950)
185
2010
Show Abstract
Prion diseases are fatal, neurodegenerative illnesses caused by the accumulation of PrP(Sc), an aberrantly folded isoform of the normal, cellular prion protein. Detection of PrP(Sc) commonly relies on immunochemical methods, a strategy hampered by the lack of Abs specific for this disease-causing isoform. In this article, we report the generation of eight mAbs against prion protein (PrP) following immunization of Prnp-null mice with rPrP. The eight mAbs exhibited distinct differential binding to cellular prion protein and PrP(Sc) from different species as well as PrP-derived synthetic peptides. Five of the eight mAbs exhibited binding to discontinuous PrP epitopes, all of which were disrupted by the addition of 2-ME or DTT, which reduced the single disulfide bond found in PrP. One mAb F20-29 reacted only with human PrP, whereas the F4-31 mAb bound bovine PrP; the K(D) values for mAbs F4-31 and F20-29 were ~500 pM. Binding of all five conformation-dependent mAbs to PrP was inhibited by 2-ME in ELISA, Western blots, and histoblots. One conformation-dependent mAb F4-31 increased the sensitivity of an ELISA-based test by nearly 500-fold when it was used as the capture Ab. These new conformation-dependent mAbs were found to be particularly useful in histoblotting studies, in which the low backgrounds after treatment with 2-ME created unusually high signal-to-noise ratios. Full Text Article | 20530267
|
Different rates of glycolysis affect glycolytic activities and protein properties in turkey breast muscle. S Eadmusik,C Molette,H Rémignon,X Fernandez Animal : an international journal of animal bioscience
3
2009
Show Abstract
Protein alterations of turkey breast muscles (Pectoralis major) were investigated at 20 min and 24 h post mortem. Specific activities, quantities and kinetic parameters of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and aldolase A were also determined at 20 min post mortem. Based on the pH values at 20 min post mortem, two groups of samples were classified as rapid glycolysis group (RG; pH20 min = 5.80 ± 0.07, n = 20) and normal glycolysis group (NG; pH20 min = 6.21 ± 0.01, n = 20). RG had lower specific activities of GAPDH and aldolase A than NG while Vm and Km values of both enzymes were not different between groups. RG showed lower high ionic strength (HIS) and pellet protein extractabilities at 20 min post mortem. It also had lower low ionic strength (LIS) and HIS protein extractabilities at 24 h post mortem. Besides pellet protein, muscular protein extractabilities at 24 h post mortem were higher than at 20 min post mortem. From SDS-PAGE of samples at 24 h post mortem, RG exhibited lower band intensities at 45 and 200 kDa, which were further identified as actin and myosin heavy chain (MHC), respectively. Western blots revealed that relative amounts of actin and MHC at 20 min post mortem were not different between groups. However, RG muscles had less relative amount of actin at 24 h post mortem. It also indicated that amounts of actin and MHC increased with regard to post mortem time. | 22444226
|