Millipore Sigma Vibrant Logo
 

proteins OR enzymes


17133 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (8,997)
  • (977)
  • (15)
  • (3)
  • (3)
  • Show More

Analyte

  • (1)

Application Type

  • (1)

General Class

  • (1)

Application Method

  • (1)
  • (1)
  • (1)
  • (1)
  • (1)

Specific Class

  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • G proteins of the Gq family couple the H2 histamine receptor to phospholipase C. 8961278

    In several cell systems histamine has been shown to stimulate both adenylyl cyclase and phospholipase C through activation of a G protein-coupled H2 receptor. To analyze the bifurcating signal emanating from the activated H2 receptor and to identify the G proteins involved, H1 and H2 histamine receptors were functionally expressed in baculovirus-infected insect cells. Histamine challenge lead to concentration-dependent cAMP formation and Ca2+ mobilization in Sf9 cells infected with a virus encoding the H2 receptor, whereas H1 receptor stimulation only resulted in pronounced phospholipase C activation. To analyze the G protein coupling pattern of histamine receptors, activated G proteins were labeled with [alpha-32P]GTP azidoanilide and identified by selective immunoprecipitation. In insect cell membranes expressing H1 histamine receptors, histamine led to incorporation of the label into alpha q-like proteins, whereas activation of the H2 receptor resulted in labeling of alpha q- and alpha s-like G protein alpha-subunits. In COS cells transfected with H2 receptor complementary DNA, histamine caused concentration-dependent accumulation of cAMP and inositol phosphates; the latter effect was insensitive to pertussis toxin treatment. Histamine stimulation led to a pronounced increase in inositol phosphate production when complementary DNAs coding for alpha q, alpha 11, alpha 14, or alpha 15 G protein alpha-subunits were cotransfected. This increase was specific for Gq family members, as overexpression of alpha 12 or alpha s did not enhance histamine-stimulated phospholipase C activation. In membranes of guinea pig heart, addition of [alpha-32P]GTP azidoanilide resulted in labeling of alpha q and alpha 11 via the activated H1 and also via H2 receptors. These data demonstrate that dual signaling of the activated H2 histamine receptor is mediated by coupling of the receptor to Gs and Gq family members.
    Document Type:
    Reference
    Product Catalog Number:
    06-709
    Product Catalog Name:
    Anti-Gq/11α Antibody, CT
  • Ric-8 proteins are molecular chaperones that direct nascent G protein α subunit membrane association. 22114146

    Ric-8A (resistance to inhibitors of cholinesterase 8A) and Ric-8B are guanine nucleotide exchange factors that enhance different heterotrimeric guanine nucleotide-binding protein (G protein) signaling pathways by unknown mechanisms. Because transgenic disruption of Ric-8A or Ric-8B in mice caused early embryonic lethality, we derived viable Ric-8A- or Ric-8B-deleted embryonic stem (ES) cell lines from blastocysts of these mice. We observed pleiotropic G protein signaling defects in Ric-8A(-/-) ES cells, which resulted from reduced steady-state amounts of Gα(i), Gα(q), and Gα(13) proteins to <5% of those of wild-type cells. The amounts of Gα(s) and total Gβ protein were partially reduced in Ric-8A(-/-) cells compared to those in wild-type cells, and only the amount of Gα(s) was reduced substantially in Ric-8B(-/-) cells. The abundances of mRNAs encoding the G protein α subunits were largely unchanged by loss of Ric-8A or Ric-8B. The plasma membrane residence of G proteins persisted in the absence of Ric-8 but was markedly reduced compared to that in wild-type cells. Endogenous Gα(i) and Gα(q) were efficiently translated in Ric-8A(-/-) cells but integrated into endomembranes poorly; however, the reduced amounts of G protein α subunits that reached the membrane still bound to nascent Gβγ. Finally, Gα(i), Gα(q), and Gβ(1) proteins exhibited accelerated rates of degradation in Ric-8A(-/-) cells compared to those in wild-type cells. Together, these data suggest that Ric-8 proteins are molecular chaperones required for the initial association of nascent Gα subunits with cellular membranes.
    Document Type:
    Reference
    Product Catalog Number:
    ABS1614
    Product Catalog Name:
    Anti-Ric-8B/Synembryn-B Antibody
  • RING1 proteins contribute to early proximal-distal specification of the forelimb bud by restricting Meis2 expression. 26674308

    Polycomb group (PcG) proteins play a pivotal role in silencing developmental genes and help to maintain various stem and precursor cells and regulate their differentiation. PcG factors also regulate dynamic and complex regional specification, particularly in mammals, but this activity is mechanistically not well understood. In this study, we focused on proximal-distal (PD) patterning of the mouse forelimb bud to elucidate how PcG factors contribute to a regional specification process that depends on developmental signals. Depletion of the RING1 proteins RING1A (RING1) and RING1B (RNF2), which are essential components of Polycomb repressive complex 1 (PRC1), led to severe defects in forelimb formation along the PD axis. We show that preferential defects in early distal specification in Ring1A/B-deficient forelimb buds accompany failures in the repression of proximal signal circuitry bound by RING1B, including Meis1/2, and the activation of distal signal circuitry in the prospective distal region. Additional deletion of Meis2 induced partial restoration of the distal gene expression and limb formation seen in the Ring1A/B-deficient mice, suggesting a crucial role for RING1-dependent repression of Meis2 and likely also Meis1 for distal specification. We suggest that the RING1-MEIS1/2 axis is regulated by early PD signals and contributes to the initiation or maintenance of the distal signal circuitry.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. 17084361

    The myelin-forming oligodendrocytes are an excellent model to study transcriptional regulation of specification events, lineage progression, and terminal differentiation in the central nervous system. Here, we show that the group D Sox transcription factors Sox5 and Sox6 jointly and cell-autonomously regulate several stages of oligodendrocyte development in the mouse spinal cord. They repress specification and terminal differentiation and influence migration patterns. As a consequence, oligodendrocyte precursors and terminally differentiating oligodendrocytes appear precociously in spinal cords deficient for both Sox proteins. Sox5 and Sox6 have opposite functions than the group E Sox proteins Sox9 and Sox10, which promote oligodendrocyte specification and terminal differentiation. Both genetic as well as molecular evidence suggests that Sox5 and Sox6 directly interfere with the function of group E Sox proteins. Our studies reveal a complex regulatory network between different groups of Sox proteins that is essential for proper progression of oligodendrocyte development.
    Document Type:
    Reference
    Product Catalog Number:
    06-599
    Product Catalog Name:
    Anti-acetyl-Histone H3 Antibody
  • Tet Proteins Connect the O-Linked N-acetylglucosamine Transferase Ogt to Chromatin in Embryonic Stem Cells. 23352454

    O-linked N-acetylglucosamine (O-GlcNAc) transferase (Ogt) activity is essential for embryonic stem cell (ESC) viability and mouse development. Ogt is present both in the cytoplasm and the nucleus of different cell types and catalyzes serine and threonine glycosylation. We have characterized the biochemical features of nuclear Ogt and identified the ten-eleven translocation (TET) proteins Tet1 and Tet2 as stable partners of Ogt in the nucleus of ESCs. We show at a genome-wide level that Ogt preferentially associates with Tet1 to genes promoters in close proximity of CpG-rich transcription start sites. These regions are characterized by low levels of DNA modification, suggesting a link between Tet1 and Ogt activities in regulating CpG island methylation. Finally, we show that Tet1 is required for binding of Ogt to chromatin affecting Tet1 activity. Taken together, our data characterize how O-GlcNAcylation is recruited to chromatin and interacts with the activity of 5-methylcytosine hydroxylases.
    Document Type:
    Reference
    Product Catalog Number:
    09-872
  • Ssdp proteins interact with the LIM-domain-binding protein Ldb1 to regulate development. 12381786

    The LIM-domain-binding protein Ldb1 is a key factor in the assembly of transcriptional complexes involving LIM-homeodomain proteins and other transcription factors that regulate animal development. We identified Ssdp proteins (previously described as sequence-specific, single-stranded-DNA-binding proteins) as components of Ldb1-associated nuclear complexes in HeLa cells. Ssdp proteins are associated with Ldb1 in a variety of additional mammalian cell types. This association is specific, does not depend on the presence of nucleic acids, and is functionally significant. Genes encoding Ssdp proteins are well conserved in evolution from Drosophila to humans. Whereas the vertebrate Ssdp gene family has several closely related members, the Drosophila Ssdp gene is unique. In Xenopus, Ssdp encoded by Drosophila Ssdp or mouse Ssdp1 mRNA enhances axis induction by Ldb1 in conjunction with the LIM-homeobox gene Xlim1. Furthermore, we were able to demonstrate an interaction between Ssdp and Chip (the fly homolog of Ldb1) in Drosophila wing development. These findings indicate functional conservation of Ssdp as a cofactor of Ldb1 during invertebrate and vertebrate development.
    Document Type:
    Reference
    Product Catalog Number:
    05-170
    Product Catalog Name:
    Anti-IL-2 Rα Antibody, clone 7G7/B6
  • VAV proteins as signal integrators for multi-subunit immune-recognition receptors. 12094222

    In recent years, substantial progress has been made towards the identification of intracellular signalling molecules that couple multi-subunit immune-recognition receptors (MIRRs) to their various effector functions. Among these, the VAV proteins have been observed to have a crucial role in regulating some of the earliest events in receptor signalling. VAV proteins function, in part, as guanine-nucleotide exchange factors (GEFs) for the RHO/RAC family of GTPases. This review focuses on the role of VAV proteins in the regulation of lymphocyte development and function, and emphasizes the regulatory roles that these proteins have through both GEF-dependent and -independent mechanisms.
    Document Type:
    Reference
    Product Catalog Number:
    07-464
    Product Catalog Name:
    Anti-Vav3 Antibody, human
  • The C proteins of human parainfluenza virus type 1 limit double-stranded RNA accumulation that would otherwise trigger activation of MDA5 and protein kinase R. 21123378

    Human parainfluenza virus type 1 (HPIV1) is an important respiratory pathogen in young children, the immunocompromised, and the elderly. We found that infection with wild-type (WT) HPIV1 suppressed the innate immune response in human airway epithelial cells by preventing not only phosphorylation of interferon regulatory factor 3 (IRF3) but also degradation of IκBβ, thereby inhibiting IRF3 and NF-κB activation, respectively. Both of these effects were ablated by a F170S substitution in the HPIV1 C proteins (F170S) or by silencing the C open reading frame [P(C-)], resulting in a potent beta interferon (IFN-β) response. Using murine knockout cells, we found that IFN-β induction following infection with either mutant relied mainly on melanoma-associated differentiation gene 5 (MDA5) rather than retinoic acid-inducible gene I (RIG-I). Infection with either mutant, but not WT HPIV1, induced a significant accumulation of intracellular double-stranded RNA (dsRNA). These mutant viruses directed a marked increase in the accumulation of viral genome, antigenome, and mRNA that was coincident with the accumulation of dsRNA. In addition, the amount of viral proteins was reduced compared to that of WT HPIV1. Thus, the accumulation of dsRNA might be a result of an imbalance in the N protein/genomic RNA ratio leading to incomplete encapsidation. Protein kinase R (PKR) activation and IFN-β induction followed the kinetics of dsRNA accumulation. Interestingly, the C proteins did not appear to directly inhibit intracellular signaling involved in IFN-β induction; instead, their role in preventing IFN-β induction appeared to be in suppressing the formation of dsRNA. PKR activation contributed to IFN-β induction and also was associated with the reduction in the amount of viral proteins. Thus, the HPIV1 C proteins normally limit the accumulation of dsRNA and thereby limit activation of IRF3, NF-κB, and PKR. If C protein function is compromised, as in the case of F170S HPIV1, the resulting PKR activation and reduction in viral protein levels enable the host to further reduce C protein levels and to mount a potent antiviral type I IFN response.
    Document Type:
    Reference
    Product Catalog Number:
    07-582-I
    Product Catalog Name:
    Anti-phospho-IRF-3 (Ser396) Antibody
  • HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. 19111658

    HP1 proteins are a highly conserved family of eukaryotic proteins that bind to methylated histone H3 lysine 9 (H3K9) and are required for heterochromatic gene silencing. In fission yeast, two HP1 homologs, Swi6 and Chp2, function in heterochromatic gene silencing, but their relative contribution to silencing remains unknown. Here we show that Swi6 and Chp2 exist in nonoverlapping complexes and make distinct contributions to silencing. Chp2 associates with the SHREC histone deacetylase complex (SHREC2), is required for histone H3 lysine 14 (H3K14) deacetylation, and mediates transcriptional repression by limiting RNA polymerase II access to heterochromatin. In contrast, Swi6 associates with a different set of nuclear proteins and with noncoding centromeric transcripts and is required for efficient RNAi-dependent processing of these transcripts. Our findings reveal an unexpected role for Swi6 in RNAi-mediated gene silencing and suggest that different HP1 proteins ensure full heterochromatic gene silencing through largely nonoverlapping inhibitory mechanisms.
    Document Type:
    Reference
    Product Catalog Number:
    07-353
    Product Catalog Name:
    Anti-acetyl-Histone H3 (Lys14) Antibody
  • AAA+ proteins RUVBL1 and RUVBL2 coordinate PIKK activity and function in nonsense-mediated mRNA decay. 20371770

    Phosphatidylinositol 3-kinase-related protein kinase (PIKK) family proteins play essential roles in DNA-based and RNA-based processes, such as the response to DNA damage, messenger RNA (mRNA) quality control, transcription, and translation, where they contribute to the maintenance of genome integrity and accurate gene expression. The adenosine triphosphatases associated with diverse cellular activities (AAA+) family proteins RuvB-like 1 (RUVBL1) and RUVBL2 are involved in various cellular processes, including transcription, RNA modification, DNA repair, and telomere maintenance. We show that RUVBL1 and RUVBL2 associate with each PIKK family member. We also show that RUVBL1 and RUVBL2 control PIKK abundance at least at the mRNA level. Knockdown of RUVBL1 or RUVBL2 decreased PIKK abundance and impaired PIKK-mediated signaling. Analysis of SMG-1, a PIKK family member involved in nonsense-mediated mRNA decay (NMD), revealed an essential role for RUVBL1 and RUVBL2 in NMD. RUVBL1 and RUVBL2 associated with SMG-1 and the messenger ribonucleoproteins in the cytoplasm and promoted the formation of mRNA surveillance complexes during NMD. Thus, RUVBL1 and RUVBL2 regulate PIKK functions on two different levels: They control the abundance of PIKKs, and they stimulate the formation of PIKK-containing molecular complexes, such as those involved in NMD.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple