Dopamine receptor and Gα(olf) expression in DYT1 dystonia mouse models during postnatal development. Zhang, L; McCarthy, DM; Sharma, N; Bhide, PG PloS one
10
e0123104
2015
Show Abstract
DYT1 dystonia is a heritable, early-onset generalized movement disorder caused by a GAG deletion (ΔGAG) in the DYT1 gene. Neuroimaging studies and studies using mouse models suggest that DYT1 dystonia is associated with dopamine imbalance. However, whether dopamine imbalance is key to DYT1 or other forms of dystonia continues to be debated.We used Dyt1 knock out (Dyt1 KO), Dyt1 ΔGAG knock-in (Dyt1 KI), and transgenic mice carrying one copy of the human DYT1 wild type allele (DYT1 hWT) or human ΔGAG mutant allele (DYT1 hMT). D1R, D2R, and Gα(olf) protein expression was analyzed by western blot in the frontal cortex, caudate-putamen and ventral midbrain in young adult (postnatal day 60; P60) male mice from all four lines; and in the frontal cortex and caudate putamen in juvenile (postnatal day 14; P14) male mice from the Dyt1 KI and KO lines. Dopamine receptor and Gα(olf) protein expression were significantly decreased in multiple brain regions of Dyt1 KI and Dyt1 KO mice and not significantly altered in the DYT1 hMT or DYT1 hWT mice at P60. The only significant change at P14 was a decrease in D1R expression in the caudate-putamen of the Dyt1 KO mice.We found significant decreases in key proteins in the dopaminergic system in multiple brain regions of Dyt1 KO and Dyt1 KI mouse lines at P60. Deletion of one copy of the Dyt1 gene (KO mice) produced the most pronounced effects. These data offer evidence that impaired dopamine receptor signaling may be an early and significant contributor to DYT1 dystonia pathophysiology. | | | 25860259
|
Localization and function of dopamine receptors in the subthalamic nucleus of normal and parkinsonian monkeys. Galvan, A; Hu, X; Rommelfanger, KS; Pare, JF; Khan, ZU; Smith, Y; Wichmann, T Journal of neurophysiology
112
467-79
2014
Show Abstract
The subthalamic nucleus (STN) receives a dopaminergic innervation from the substantia nigra pars compacta, but the role of this projection remains poorly understood, particularly in primates. To address this issue, we used immuno-electron microscopy to localize D1, D2, and D5 dopamine receptors in the STN of rhesus macaques and studied the electrophysiological effects of activating D1-like or D2-like receptors in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian monkeys. Labeling of D1 and D2 receptors was primarily found presynaptically, on preterminal axons and putative glutamatergic and GABAergic terminals, while D5 receptors were more significantly expressed postsynaptically, on dendritic shafts of STN neurons. The electrical spiking activity of STN neurons, recorded with standard extracellular recording methods, was studied before, during, and after intra-STN administration of the dopamine D1-like receptor agonist SKF82958, the D2-like receptor agonist quinpirole, or artificial cerebrospinal fluid (control injections). In normal animals, administration of SKF82958 significantly reduced the spontaneous firing but increased the rate of intraburst firing and the proportion of pause-burst sequences of firing. Quinpirole only increased the proportion of such pause-burst sequences in STN neurons of normal monkeys. In MPTP-treated monkeys, the D1-like receptor agonist also reduced the firing rate and increased the proportion of pause-burst sequences, while the D2-like receptor agonist did not change any of the chosen descriptors of the firing pattern of STN neurons. Our data suggest that dopamine receptor activation can directly modulate the electrical activity of STN neurons by pre- and postsynaptic mechanisms in both normal and parkinsonian states, predominantly via activation of D1 receptors. | | | 24760789
|
Single and binge methamphetamine administrations have different effects on the levels of dopamine D2 autoreceptor and dopamine transporter in rat striatum. Chauhan, H; Killinger, BA; Miller, CV; Moszczynska, A International journal of molecular sciences
15
5884-906
2014
Show Abstract
Methamphetamine (METH) is a central nervous system psychostimulant with a high potential for abuse. At high doses, METH causes a selective degeneration of dopaminergic terminals in the striatum. Dopamine D2 receptor antagonists and dopamine transporter (DAT) inhibitors protect against neurotoxicity of the drug by decreasing intracellular dopamine content and, consequently, dopamine autoxidation and production of reactive oxygen species. In vitro, amphetamines regulate D2 receptor and DAT functions via regulation of their intracellular trafficking. No data exists on axonal transport of both proteins and there is limited data on their interactions in vivo. The aim of the present investigation was to examine synaptosomal levels of presynaptic D2 autoreceptor and DAT after two different regimens of METH and to determine whether METH affects the D2 autoreceptor-DAT interaction in the rat striatum. We found that, as compared to saline controls, administration of single high-dose METH decreased D2 autoreceptor immunoreactivity and increased DAT immunoreactivity in rat striatal synaptosomes whereas binge high-dose METH increased immunoreactivity of D2 autoreceptor and had no effect on DAT immunoreactivity. Single METH had no effect on D2 autoreceptor-DAT interaction whereas binge METH increased the interaction between the two proteins in the striatum. Our results suggest that METH can affect axonal transport of both the D2 autoreceptor and DAT in an interaction-dependent and -independent manner. | Western Blotting | | 24717411
|
Antibiotic treatment attenuates behavioral and neurochemical changes induced by exposure of rats to group a streptococcal antigen. Lotan, D; Cunningham, M; Joel, D PloS one
9
e101257
2014
Show Abstract
Post-streptococcal A (GAS) sequelae including movement and neuropsychiatric disorders have been associated with improvement in response to antibiotic therapy. Besides eradication of infection, the underlying basis of attenuation of neuropsychiatric symptoms following antibiotic treatment is not known. The aim of the present study was to test the efficacy of antibiotic treatment in a rat model of GAS-related neuropsychiatric disorders. In the model, rats were not infected but were exposed to GAS-antigen or to adjuvants only (Control rats) and treated continuously with the antibiotic ampicillin in their drinking water from the first day of GAS-antigen exposure. Two additional groups of rats (GAS and Control) did not receive ampicillin in their drinking water. Behavior of the four groups was assessed in the forced swim, marble burying and food manipulation assays. We assessed levels of D1 and D2 dopamine receptors and tyrosine hydroxylase in the prefrontal cortex and striatum, and IgG deposition in the prefrontal cortex, striatum and thalamus. Ampicillin treatment prevented emergence of the motor and some of the behavioral alterations induced by GAS-antigen exposure, reduced IgG deposition in the thalamus of GAS-exposed rats, and tended to attenuate the increase in the level of TH and D1 and D2 receptors in their striatum, without concomitantly reducing the level of sera anti-GAS antibodies. Our results reinforce the link between exposure to GAS antigen, dysfunction of central dopaminergic pathways and motor and behavioral alterations. Our data further show that some of these deleterious effects can be attenuated by antibiotic treatment, and supports the latter's possible efficacy as a prophylactic treatment in GAS-related neuropsychiatric disorders. | | | 24979049
|
An-jun-ning, a traditional herbal formula, attenuates spontaneous withdrawal symptoms via modulation of the dopamine system in morphine-dependent rats. Gao, JL; Tu, SA; Liu, J; Zhang, JM; Huang, Y; Han, M; Liang, JH BMC complementary and alternative medicine
14
308
2014
Show Abstract
The dopamine system, which is involved in drug dependence, can be damaged by opioid abuse. However, current clinical medicines cannot reverse these damages in the brain, which are believed to be a key reason for the high relapse rate after abstinence treatment. This study aimed to investigate the effects of An-jun-ning (AJN), a commercial traditional Chinese medicine formula used for the treatment of opioid addiction, on the dopamine system in morphine-dependent rats and to explore the possible mechanism underlying its therapeutic effects.The morphine dependence model was obtained through injections of morphine at increasing doses for 8 days. The AJN pre-treatment group was administered AJN 30 min before each morphine administration, and the AJN post-treatment groups were treated with AJN for 10 days after withdrawal. Spontaneous withdrawal symptoms (wet dog shakes, and episodes of writhing) were observed after withdrawal. Autoradiography study and/or immunohistochemical staining were used to examine the levels of dopamine transporter (DAT), dopamine D2 receptor (D2R) and tyrosine hydroxylase (TH).(1) Pre-treatment with AJN attenuates wet dog shakes and episodes of writhing to approximately 50% or less of those observed in the morphine group (p less than 0.01). (2) AJN post-treatment dose-dependently reduced the number of wet dog shakes (p less than 0.01), and the episodes of writhing (p less than 0.01). (3) Pre-treatment with AJN effectively interdicted the morphine-induced decreases in the levels of DAT, D2R, and TH in the striatum (p less than 0.01) such that they remained at nearly normal levels. (4) Post-treatment with AJN restored DAT and D2R to the normal levels (p less than 0.01) and the level of TH to 87% of normal in the striatum.AJN can effectively alleviate opioid withdrawal symptoms and preserve or restore the DAT, D2R, and TH levels in the striatum. The mechanism underlying the effect of AJN on withdrawal symptoms may be related to the modulation of the dopamine system by AJN. These results suggest that AJN may help to prevent relapse in opioid dependence treatment. | | | 25134609
|
Quantitative, noninvasive, in vivo longitudinal monitoring of gene expression in the brain by co-AAV transduction with a PET reporter gene. Yoon, SY; Gay-Antaki, C; Ponde, DE; Poptani, H; Vite, CH; Wolfe, JH Molecular therapy. Methods & clinical development
1
14016
2014
Show Abstract
In vivo imaging of vector transgene expression would be particularly valuable for repetitive monitoring of therapy in the brain, where invasive tissue sampling is contraindicated. We evaluated adeno-associated virus vector expression of a dopamine-2 receptor (D2R) mutant (D2R80A) by positron emission tomography in the brains of mice and cats. D2R80A is inactivated for intracellular signaling and binds subphysiologic amounts of the radioactive [(18)F]-fallypride analog of dopamine. The [(18)F]-fallypride signal bound to D2R80A in the injection site was normalized to the signal from endogenous D2R in the striatum and showed stable levels of expression within individual animals. A separate adeno-associated virus type 1 vector with identical gene expression control elements, expressing green fluorescent protein or a therapeutic gene, was coinjected with the D2R80A vector at equal doses into specific sites. Both transgenes had similar levels of gene expression by immunohistochemistry, in situ hybridization, and quantitative PCR assays, demonstrating that D2R80A is a faithful surrogate measure for expression of a gene of interest. This dual vector approach allows the D2R80A gene to be used with any therapeutic gene and to be injected into a single site for monitoring while the therapeutic gene can be distributed more widely as needed in each disease. | | | 26015960
|
Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons. Romero-Fernandez, W; Borroto-Escuela, DO; Vargas-Barroso, V; Narváez, M; Di Palma, M; Agnati, LF; Larriva Sahd, J; Fuxe, K European journal of histochemistry : EJH
58
2400
2014
Show Abstract
Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tubero-infundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region. Dopamine D1 and D2 receptors may therefore directly and differentially modulate the activity and /or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region. | | | 25308843
|
Optogenetics reveals a role for accumbal medium spiny neurons expressing dopamine D2 receptors in cocaine-induced behavioral sensitization. Song, SS; Kang, BJ; Wen, L; Lee, HJ; Sim, HR; Kim, TH; Yoon, S; Yoon, BJ; Augustine, GJ; Baik, JH Frontiers in behavioral neuroscience
8
336
2014
Show Abstract
Long-lasting, drug-induced adaptations within the nucleus accumbens (NAc) have been proposed to contribute to drug-mediated addictive behaviors. Here we have used an optogenetic approach to examine the role of NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2Rs) in cocaine-induced behavioral sensitization. Adeno-associated viral vectors encoding channelrhodopsin-2 (ChR2) were delivered into the NAc of D2R-Cre transgenic mice. This allowed us to selectively photostimulate D2R-MSNs in NAc. D2R-MSNs form local inhibitory circuits, because photostimulation of D2R-MSN evoked inhibitory postsynaptic currents (IPSCs) in neighboring MSNs. Photostimulation of NAc D2R-MSN in vivo affected neither the initiation nor the expression of cocaine-induced behavioral sensitization. However, photostimulation during the drug withdrawal period attenuated expression of cocaine-induced behavioral sensitization. These results show that D2R-MSNs of NAc play a key role in withdrawal-induced plasticity and may contribute to relapse after cessation of drug abuse. | | | 25352792
|
Inhibition of tetrodotoxin-resistant sodium current in dorsal root ganglia neurons mediated by D1/D5 dopamine receptors. Galbavy, W; Safaie, E; Rebecchi, MJ; Puopolo, M Molecular pain
9
60
2013
Show Abstract
Dopaminergic fibers originating from area A11 of the hypothalamus project to different levels of the spinal cord and represent the major source of dopamine. In addition, tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines, is expressed in 8-10% of dorsal root ganglia (DRG) neurons, suggesting that dopamine may be released in the dorsal root ganglia. Dopamine has been shown to modulate calcium current in DRG neurons, but the effects of dopamine on sodium current and on the firing properties of small DRG neurons are poorly understood.The effects of dopamine and dopamine receptor agonists were tested on the tetrodotoxin-resistant (TTX-R) sodium current recorded from acutely dissociated small (diameter ≤ 25 μm) DRG neurons. Dopamine (20 μM) and SKF 81297 (10 μM) caused inhibition of TTX-R sodium current in small DRG neurons by 23% and 37%, respectively. In contrast, quinpirole (20 μM) had no effects on the TTX-R sodium current. Inhibition by SKF 81297 of the TTX-R sodium current was not affected when the protein kinase A (PKA) activity was blocked with the PKA inhibitory peptide (6-22), but was greatly reduced when the protein kinase C (PKC) activity was blocked with the PKC inhibitory peptide (19-36), suggesting that activation of D1/D5 dopamine receptors is linked to PKC activity. Expression of D1and D5 dopamine receptors in small DRG neurons, but not D2 dopamine receptors, was confirmed by Western blotting and immunofluorescence analysis. In current clamp experiments, the number of action potentials elicited in small DRG neurons by current injection was reduced by ~ 30% by SKF 81297.We conclude that activation of D1/D5 dopamine receptors inhibits TTX-R sodium current in unmyelinated nociceptive neurons and dampens their intrinsic excitability by reducing the number of action potentials in response to stimulus. Increasing or decreasing levels of dopamine in the dorsal root ganglia may serve to adjust the sensitivity of nociceptors to noxious stimuli. | | | 24283218
|
Dopamine receptors in human embryonic stem cell neurodifferentiation. Belinsky, GS; Sirois, CL; Rich, MT; Short, SM; Moore, AR; Gilbert, SE; Antic, SD Stem cells and development
22
1522-40
2013
Show Abstract
We tested whether dopaminergic drugs can improve the protocol for in vitro differentiation of H9 human embryonic stem cells (hESCs) into dopaminergic neurons. The expression of 5 dopamine (DA) receptor subtypes (mRNA and protein) was analyzed at each protocol stage (1, undifferentiated hESCs; 2, embryoid bodies [EBs]; 3, neuroepithelial rosettes; 4, expanding neuroepithelium; and 5, differentiating neurons) and compared to human fetal brain (gestational week 17-19). D2-like DA receptors (D2, D3, and D4) predominate over the D1-like receptors (D1 and D5) during derivation of neurons from hESCs. D1 was the receptor subtype with the lowest representation in each protocol stage (Stages 1-5). D1/D5-agonist SKF38393 and D2/D3/D4-agonist quinpirole (either alone or combined) evoked Ca(2+) responses, indicating functional receptors in hESCs. To identify when receptor activation causes a striking effect on hESC neurodifferentiation, and what ligands and endpoints are most interesting, we varied the timing, duration, and drug in the culture media. Dopaminergic agonists or antagonists were administered either early (Stages 1-3) or late (Stages 4-5). Early DA exposure resulted in more neuroepithelial colonies, more neuronal clusters, and more TH(+) clusters. The D1/D5 antagonist SKF83566 had a strong effect on EB morphology and the expression of midbrain markers. Late exposure to DA resulted in a modest increase in TH(+) neuron clusters (∼75%). The increase caused by DA did not occur in the presence of dibutyryl cAMP (dbcAMP), suggesting that DA acts through the cAMP pathway. However, a D2-antagonist (L741) decreased TH(+) cluster counts. Electrophysiological parameters of the postmitotic neurons were not significantly affected by late DA treatment (Stages 4-5). The mRNA of mature neurons (VGLUT1 and GAD1) and the midbrain markers (GIRK2, LMX1A, and MSX1) were lower in hESCs treated by DA or a D2-antagonist. When hESCs were neurodifferentiated on PA6 stromal cells, DA also increased expression of tyrosine hydroxylase. Although these results are consistent with DA's role in potentiating DA neurodifferentiation, dopaminergic treatments are generally less efficient than dbcAMP alone. | Western Blotting | | 23286225
|