Exosome release of ADAM15 and the functional implications of human macrophage-derived ADAM15 exosomes. Lee, HD; Koo, BH; Kim, YH; Jeon, OH; Kim, DS FASEB journal : official publication of the Federation of American Societies for Experimental Biology
26
3084-95
2011
Kivonat megmutatása
A disintegrin and metalloproteinase 15 (ADAM15), the only ADAM protein containing an Arg-Gly-Asp (RGD) motif in its disintegrin-like domain, is a widely expressed membrane protein that is involved in tumor progression and suppression. However, the underlying mechanism of ADAM15-mediated tumor suppression is not clearly understood. This study demonstrates that ADAM15 is released as an exosomal component, and ADAM15 exosomes exert tumor suppressive activities. We found that exosomal ADAM15 release is stimulated by phorbol 12-myristate 13-acetate, a typical protein kinase C activator, in various tumor cell types, and this results in a corresponding decrease in plasma membrane-associated ADAM15. Exosomes rich in ADAM15 display enhanced binding affinity for integrin αvβ3 in an RGD-dependent manner and suppress vitronectin- and fibronectin-induced cell adhesion, growth, and migration, as well as in vivo tumor growth. Exosomal ADAM15 is released from human macrophages, and macrophage-derived ADAM15 exosomes have tumor inhibitory effects. This work suggests a primary role of ADAM15 for exosome-mediated tumor suppression, as well as functional significance of exosomal ADAM protein in antitumor immunity. | | 22505472
|
Negative regulation of JAK2 by H3K9 methyltransferase G9a in leukemia. Son, HJ; Kim, JY; Hahn, Y; Seo, SB Molecular and cellular biology
32
3681-94
2011
Kivonat megmutatása
Histone methylation at specific lysine residues is a crucial regulatory process in transcriptional regulation. Using chromatin immunoprecipitation with microarray technology (ChIP-chip) analysis, we found that the H3K9-me2 target gene JAK2 was an important factor during differentiation of the HL-60 promyelocytic leukemia cell line by all-trans-retinoic acid (ATRA) treatment. Here, we report that the H3K9 methyltransferase G9a negatively regulated JAK2 transcription in histone methyltransferase activity and in a YY1-dependent manner during ATRA-mediated leukemia cell differentiation. We found that G9a knockdown repressed ATRA-mediated HL-60 cell differentiation. We demonstrated that G9a interacts with YY1 and is recruited to the JAK2 promoter along with corepressors, including histone deacetylase, that induced H3K9-me2. Repression of JAK2 transcription by G9a decreased H3Y41 phosphorylation and promoted inhibition of the recently identified JAK2-H3Y41P-HP1α pathway-mediated leukemogenesis. | Fluorescence Activated Cell Sorting (FACS) | 22801367
|