Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Deng, X; Gu, L; Liu, C; Lu, T; Lu, F; Lu, Z; Cui, P; Pei, Y; Wang, B; Hu, S; Cao, X Proceedings of the National Academy of Sciences of the United States of America
107
19114-9
2009
Kivonat megmutatása
Protein arginine methylation, one of the most abundant and important posttranslational modifications, is involved in a multitude of biological processes in eukaryotes, such as transcriptional regulation and RNA processing. Symmetric arginine dimethylation is required for snRNP biogenesis and is assumed to be essential for pre-mRNA splicing; however, except for in vitro evidence, whether it affects splicing in vivo remains elusive. Mutation in an Arabidopsis symmetric arginine dimethyltransferase, AtPRMT5, causes pleiotropic developmental defects, including late flowering, but the underlying molecular mechanism is largely unknown. Here we show that AtPRMT5 methylates a wide spectrum of substrates, including some RNA binding or processing factors and U snRNP AtSmD1, D3, and AtLSm4 proteins, which are involved in RNA metabolism. RNA-seq analyses reveal that AtPRMT5 deficiency causes splicing defects in hundreds of genes involved in multiple biological processes. The splicing defects are identified in transcripts of several RNA processing factors involved in regulating flowering time. In particular, splicing defects at the flowering regulator flowering locus KH domain (FLK) in atprmt5 mutants reduce its functional transcript and protein levels, resulting in the up-regulation of a flowering repressor flowering locus C (FLC) and consequently late flowering. Taken together, our findings uncover an essential role for arginine methylation in proper pre-mRNA splicing that impacts diverse developmental processes. | Western Blotting | 20956294
|
Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. Boisvert, Francois-Michel, et al. J. Cell Biol., 159: 957-69 (2002)
2002
Kivonat megmutatása
The nuclear structures that contain symmetrical dimethylated arginine (sDMA)-modified proteins and the role of this posttranslational modification is unknown. Here we report that the Cajal body is a major epitope in HeLa cells for an sDMA-specific antibody and that coilin is an sDMA-containing protein as analyzed by using the sDMA-specific antibody and matrix-assisted laser desorption ionization time of flight mass spectrometry. The methylation inhibitor 5'-deoxy-5'-methylthioadenosine reduces the levels of coilin methylation and causes the appearance of SMN-positive gems. In cells devoid of Cajal bodies, such as primary fibroblasts, sDMA-containing proteins concentrated in speckles. Cells from a patient with spinal muscular atrophy, containing low levels of the methyl-binding protein SMN, localized sDMA-containing proteins in the nucleoplasm as a discrete granular pattern. Splicing reactions are efficiently inhibited by using the sDMA-specific antibody or by using hypomethylated nuclear extracts, showing that active spliceosomes contain sDMA polypeptides and suggesting that arginine methylation is important for efficient pre-mRNA splicing. Our findings support a model in which arginine methylation is important for the localization of coilin and SMN in Cajal bodies. | | 12486110
|