Large intercalated neurons of amygdala relay noxious sensory information. Bienvenu, TC; Busti, D; Micklem, BR; Mansouri, M; Magill, PJ; Ferraguti, F; Capogna, M The Journal of neuroscience : the official journal of the Society for Neuroscience
35
2044-57
2015
Kivonat megmutatása
Various GABAergic neuron types of the amygdala cooperate to control principal cell firing during fear-related and other behaviors, and understanding their specialized roles is important. Among GABAergic neurons, the so-called intercalated cells (ITCcs) are critically involved in the expression and extinction of fear memory. Tightly clustered small-sized spiny neurons constitute the majority of ITCcs, but they are surrounded by sparse, larger neurons (L-ITCcs) for which very little information is known. We report here a detailed neurochemical, structural and physiological characterization of rat L-ITCcs, as identified with juxtacellular recording/labeling in vivo. We supplement these data with anatomical and neurochemical analyses of nonrecorded L-ITCcs. We demonstrate that L-ITCcs are GABAergic, and strongly express metabotropic glutamate receptor 1α and GABAA receptor α1 subunit, together with moderate levels of parvalbumin. Furthermore, L-ITCcs are innervated by fibers enriched with metabotropic glutamate receptors 7a and/or 8a. In contrast to small-sized spiny ITCcs, L-ITCcs possess thick, aspiny dendrites, have highly branched, long-range axonal projections, and innervate interneurons in the basolateral amygdaloid complex. The axons of L-ITCcs also project to distant brain areas, such as the perirhinal, entorhinal, and endopiriform cortices. In vivo recorded L-ITCcs are strongly activated by noxious stimuli, such as hindpaw pinches or electrical footshocks. Consistent with this, we observed synaptic contacts on L-ITCc dendrites from nociceptive intralaminar thalamic nuclei. We propose that, during salient sensory stimulation, L-ITCcs disinhibit local and distant principal neurons, acting as "hub cells," to orchestrate the activity of a distributed network. | | 25653362
|
Glucagon-like peptide-1 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro. Baldassano, S; Wang, GD; Mulè, F; Wood, JD American journal of physiology. Gastrointestinal and liver physiology
302
G352-8
2011
Kivonat megmutatása
Glucagon-like peptide-1 (GLP-1) acts at the G protein-coupled receptor, GLP-1R, to stimulate secretion of insulin and to inhibit secretion of glucagon and gastric acid. Involvement in mucosal secretory physiology has received negligible attention. We aimed to study involvement of GLP-1 in mucosal chloride secretion in the small intestine. Ussing chamber methods, in concert with transmural electrical field stimulation (EFS), were used to study actions on neurogenic chloride secretion. ELISA was used to study GLP-1R effects on neural release of acetylcholine (ACh). Intramural localization of GLP-1R was assessed with immunohistochemistry. Application of GLP-1 to serosal or mucosal sides of flat-sheet preparations in Ussing chambers did not change baseline short-circuit current (I(sc)), which served as a marker for chloride secretion. Transmural EFS evoked neurally mediated biphasic increases in I(sc) that had an initial spike-like rising phase followed by a sustained plateau-like phase. Blockade of the EFS-evoked responses by tetrodotoxin indicated that the responses were neurally mediated. Application of GLP-1 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-1 receptor antagonist exendin-(9-39) suppressed this action of GLP-1. The GLP-1 inhibitory action on EFS-evoked responses persisted in the presence of nicotinic or vasoactive intestinal peptide receptor antagonists but not in the presence of a muscarinic receptor antagonist. GLP-1 significantly reduced EFS-evoked ACh release. In the submucosal plexus, GLP-1R immunoreactivity (IR) was expressed by choline acetyltransferase-IR neurons, neuropeptide Y-IR neurons, somatostatin-IR neurons, and vasoactive intestinal peptide-IR neurons. Our results suggest that GLP-1R is expressed in guinea pig submucosal neurons and that its activation leads to a decrease in neurally evoked chloride secretion by suppressing release of ACh at neuroepithelial junctions in the enteric neural networks that control secretomotor functions. | | 22075777
|
Spatiotemporal distribution of vasoactive intestinal polypeptide receptor 2 in mouse suprachiasmatic nucleus. An, S; Tsai, C; Ronecker, J; Bayly, A; Herzog, ED The Journal of comparative neurology
520
2730-41
2011
Kivonat megmutatása
Vasoactive intestinal polypeptide (VIP) signaling is critical for circadian rhythms. For example, the expression of VIP and its main receptor, VPAC2R, is necessary for maintaining synchronous daily rhythms among neurons in the suprachiasmatic nucleus (SCN), a master circadian pacemaker in animals. Where and when VPAC2R protein is expressed in the SCN and other brain areas has not been examined. Using immunohistochemistry, we characterized a new antibody and found that VPAC2R was highly enriched in the SCN and detectable at low levels in many brain areas. Within the SCN, VPAC2R was circadian, peaking in the subjective morning, and abundantly expressed from the rostral to caudal margins with more in the dorsomedial than ventrolateral area. VPAC2R was found in nearly all SCN cells including neurons expressing either VIP or vasopressin (AVP). SCN neurons mainly expressed VPAC2R in their somata and dendrites, not axons. Finally, constant light increased VIP and AVP expression, but not VPAC2R. We conclude that the circadian clock, not the ambient light level, regulates VPAC2R protein localization. These results are consistent with VPAC2R playing a role in VIP signaling at all times of day, broadly throughout the brain and in all SCN cells. | | 22684939
|
Immunoreactivity for high-affinity choline transporter colocalises with VAChT in human enteric nervous system. Andrea M Harrington,Margaret Lee,Sim-Yee Ong,Eric Yong,Pamela Farmer,Cristal J Peck,Chung W Chow,John M Hutson,Bridget R Southwell Cell and tissue research
341
2009
Kivonat megmutatása
Cholinergic nerves are identified by labelling molecules in the ACh synthesis, release and destruction pathway. Recently, antibodies against another molecule in this pathway have been developed. Choline reuptake at the synapse occurs via the high-affinity choline transporter (CHT1). CHT1 immunoreactivity is present in cholinergic nerve fibres containing vesicular acetylcholine transporter (VAChT) in the human and rat central nervous system and rat enteric nervous system. We have examined whether CHT1 immunoreactivity is present in nerve fibres in human intestine and whether it is colocalised with markers of cholinergic, tachykinergic or nitrergic circuitry. Human ileum and colon were fixed, sectioned and processed for fluorescence immunohistochemistry with antibodies against CHT1, class III beta-tubulin (TUJ1), synaptophysin, common choline acetyl-transferase (cChAT), VAChT, nitric oxide synthase (NOS), substance P (SP) and vasoactive intestinal peptide (VIP). CHT1 immunoreactivity was present in many nerve fibres in the circular and longitudinal muscle, myenteric and submucosal ganglia, submucosa and mucosa in human colon and ileum and colocalised with immunoreactivity for TUJ1 and synaptophysin confirming its presence in nerve fibres. In nerve fibres in myenteric ganglia and muscle, CHT1 immunoreactivity colocalised with immunoreactivity for VAChT and cChAT. Some colocalisation occurred with SP immunoreactivity, but little with immunoreactivity for VIP or NOS. In the mucosa, CHT1 immunoreactivity colocalised with that for VIP and SP in nerve fibres and was also present in vascular nerve fibres in the submucosa and on epithelial cells on the luminal border of crypts. The colocalisation of CHT1 immunoreactivity with VAChT immunoreactivity in cholinergic enteric nerves in the human bowel thus suggests that CHT1 represents another marker of cholinergic nerves. | | 20490865
|
Expression of NKCC2 in the rat gastrointestinal tract. H Xue,S Liu,T Ji,W Ren,X H Zhang,L F Zheng,J D Wood,J X Zhu Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society
21
2009
Kivonat megmutatása
NKCC2, an isoform of Na+-K+-2Cl(-) cotransporter, is principally present in the kidney and plays a critical role in salt reabsorption. Expression of NKCC2 has been found in the apical membrane of intestinal epithelial cells in a number of marine fish, however, details for expression in the mammalian gastrointestinal tract are lacking. RT-PCR, Western blotting and immunohistochemistry were used to study the expression and localization of NKCC2 in the rat gastrointestinal tract. We found that mRNA transcripts, protein and immunoreactivity (IR) for NKCC2 were expressed in the stomach, small and large intestine of adult rats. NKCC2 IR was localized to the base of the gastric glands, intestinal epithelia, myenteric and submucosal plexuses. NKCC2 IR was expressed strongly in the apical membranes and weakly in the basolateral membranes of intestinal epithelial cells. In the enteric nervous system, NKCC2 IR was widely distributed and localized to enteric neurons with cholinergic, calretinin and nitrergic neuronal immunochemical codes in the myenteric plexus. It was localized to non-cholinergic secretomotor neurons in the submucosal plexus. In conclusion, this study for the first time clearly detected the expression of NKCC2 in the gastrointestinal tract of a mammalian species. Expression of NKCC2 in gastrointestinal epithelial cells suggested that this cation chloride cotransporter might be involved in gastrointestinal ion transport. Expression of NKCC2 in enteric neurons might contribute to the accumulation of Cl(-) and a more depolarized E(Cl)(-) in enteric neurons. | | 19460103
|
Differential expression of canonical (classical) transient receptor potential channels in guinea pig enteric nervous system. Liu, S; Qu, MH; Ren, W; Hu, HZ; Gao, N; Wang, GD; Wang, XY; Fei, G; Zuo, F; Xia, Y; Wood, JD The Journal of comparative neurology
511
847-62
2008
Kivonat megmutatása
The canonical transient receptor potential (TRPC) family of ion channels is implicated in many neuronal processes including calcium homeostasis, membrane excitability, synaptic transmission, and axon guidance. TRPC channels are postulated to be important in the functional neurobiology of the enteric nervous system (ENS); nevertheless, details for expression in the ENS are lacking. Reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemistry were used to study the expression and localization of TRPC channels. We found mRNA transcripts, protein on Western blots, and immunoreactivity (IR) for TRPC1/3/4/6 expressed in the small intestinal ENS of adult guinea pigs. TRPC1/3/4/6-IR was localized to distinct subpopulations of enteric neurons and was differentially distributed between the myenteric and submucosal divisions of the ENS. TRPC1-IR was widely distributed and localized to neurons with cholinergic, calretinin, and nitrergic neuronal immunochemical codes in the myenteric plexus. It was localized to both cholinergic and noncholinergic secretomotor neurons in the submucosal plexus. TRPC3-IR was found only in the submucosal plexus and was expressed exclusively by neuropeptide Y-IR neurons. TRPC4/6-IR was expressed in only a small population of myenteric neurons, but was abundantly expressed in the submucosal plexus. TRPC4/6-IR was coexpressed with both cholinergic and nitrergic neurochemical codes in the myenteric plexus. In the submucosal plexus, TRPC4/6-IR was expressed exclusively in noncholinergic secretomotor neurons. No TRPC1/3/4/6-IR was found in calbindin-IR neurons. TRPC3/4/6-IR was widely expressed along varicose nerve fibers and colocalized with synaptophysin-IR at putative neurotransmitter release sites. Our results suggest important roles for TRPC channels in ENS physiology and neuronal regulation of gut function. Teljes cikk | Guinea Pig | 18925632
|
Platelet-activating factor in the enteric nervous system of the guinea pig small intestine. Wang, GD; Wang, XY; Hu, HZ; Fang, XC; Liu, S; Gao, N; Xia, Y American journal of physiology. Gastrointestinal and liver physiology
291
G928-37
2005
Kivonat megmutatása
Platelet-activating factor (PAF) is a proinflammatory mediator that may influence neuronal activity in the enteric nervous system (ENS). Electrophysiology, immunofluorescence, Western blot analysis, and RT-PCR were used to study the action of PAF and the expression of PAF receptor (PAFR) in the ENS. PAFR immunoreactivity (IR) was expressed by 6.9% of the neurons in the myenteric plexus and 14.5% of the neurons in the submucosal plexus in all segments of the guinea pig intestinal tract as determined by double staining with anti-human neuronal protein antibody. PAFR IR was found in 6.1% of the neurons with IR for calbindin, 35.8% of the neurons with IR for neuropeptide Y (NPY), 30.6% of the neurons with IR for choline acetyltransferase (ChAT), and 1.96% of the neurons with IR for vasoactive intestinal peptide (VIP) in the submucosal plexus. PAFR IR was also found in 1.5% of the neurons with IR for calbindin, 51.1% of the neurons with IR for NPY, and 32.9% of the neurons with IR for ChAT in the myenteric plexus. In the submucosal plexus, exposure to PAF (200-600 nM) evoked depolarizing responses (8.2 +/- 3.8 mV) in 12.4% of the neurons with S-type electrophysiological behavior and uniaxonal morphology and in 12.5% of the neurons with AH-type electrophysiological behavior and Dogiel II morphology, whereas in the myenteric preparations, depolarizing responses were elicited by a similar concentration of PAF in 9.5% of the neurons with S-type electrophysiological behavior and uniaxonal morphology and in 12.0% of the neurons with AH-type electrophysiological behavior and Dogiel II morphology. The results suggest that subgroups of secreto- and musculomotor neurons in the submucosal and myenteric plexuses express PAFR. Coexpression of PAFR IR with ChAT IR in the myenteric plexus and ChAT IR and VIP IR in the submucosal plexus suggests that PAF, after release in the inflamed bowel, might act to elevate the excitability of submucosal secretomotor and myenteric musculomotor neurons. Enhanced excitability of motor neurons might lead to a state of neurogenic secretory diarrhea. | | 17030900
|