Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation. Yang, Y; McBride, KM; Hensley, S; Lu, Y; Chedin, F; Bedford, MT Molecular cell
53
484-97
2014
Kivonat megmutatása
Tudor domain-containing protein 3 (TDRD3) is a major methylarginine effector molecule that reads methyl-histone marks and facilitates gene transcription. However, the underlying mechanism by which TDRD3 functions as a transcriptional coactivator is unknown. We identified topoisomerase IIIB (TOP3B) as a component of the TDRD3 complex. TDRD3 serves as a molecular bridge between TOP3B and arginine-methylated histones. The TDRD3-TOP3B complex is recruited to the c-MYC gene promoter primarily by the H4R3me2a mark, and the complex promotes c-MYC gene expression. TOP3B relaxes negative supercoiled DNA and reduces transcription-generated R loops in vitro. TDRD3 knockdown in cells increases R loop formation at the c-MYC locus, and Tdrd3 null mice exhibit elevated R loop formation at this locus in B cells. Tdrd3 null mice show significantly increased c-Myc/Igh translocation, a process driven by R loop structures. By reducing negative supercoiling and resolving R loops, TOP3B promotes transcription, protects against DNA damage, and reduces the frequency of chromosomal translocations. | 24507716
|
TDRD3 is an effector molecule for arginine-methylated histone marks. Yang, Y; Lu, Y; Espejo, A; Wu, J; Xu, W; Liang, S; Bedford, MT Molecular cell
40
1016-23
2009
Kivonat megmutatása
Specific sites of histone tail methylation are associated with transcriptional activity at gene loci. These methyl marks are interpreted by effector molecules, which harbor protein domains that bind the methylated motifs and facilitate either active or inactive states of transcription. CARM1 and PRMT1 are transcriptional coactivators that deposit H3R17me2a and H4R3me2a marks, respectively. We used a protein domain microarray approach to identify the Tudor domain-containing protein TDRD3 as a "reader" of these marks. Importantly, TDRD3 itself is a transcriptional coactivator. This coactivator activity requires an intact Tudor domain. TDRD3 is recruited to an estrogen-responsive element in a CARM1-dependent manner. Furthermore, ChIP-seq analysis of TDRD3 reveals that it is predominantly localized to transcriptional start sites. Thus, TDRD3 is an effector molecule that promotes transcription by binding methylarginine marks on histone tails. | 21172665
|