FIP5 phosphorylation during mitosis regulates apical trafficking and lumenogenesis. Li, D; Mangan, A; Cicchini, L; Margolis, B; Prekeris, R EMBO reports
15
428-37
2014
Kivonat megmutatása
Apical lumen formation is a key step during epithelial morphogenesis. The establishment of the apical lumen is a complex process that involves coordinated changes in plasma membrane composition, endocytic transport, and cytoskeleton organization. These changes are accomplished, at least in part, by the targeting and fusion of Rab11/FIP5-containing apical endosomes with the apical membrane initiation site (AMIS). Although AMIS formation and polarized transport of Rab11/FIP5-containing endosomes are crucial for the formation of a single apical lumen, the spatiotemporal regulation of this process remains poorly understood. Here, we demonstrate that the formation of the midbody during cytokinesis is a symmetry-breaking event that establishes the location of the AMIS. The interaction of FIP5 with SNX18, which is required for the formation of apical endocytic carriers, is inhibited by GSK-3 phosphorylation at FIP5-T276. Importantly, we show that FIP5-T276 phosphorylation occurs specifically during metaphase and anaphase, to ensure the fidelity and timing of FIP5-endosome targeting to the AMIS during apical lumen formation. | 24591568
|
Interaction between FIP5 and SNX18 regulates epithelial lumen formation. Willenborg, C; Jing, J; Wu, C; Matern, H; Schaack, J; Burden, J; Prekeris, R The Journal of cell biology
195
71-86
2010
Kivonat megmutatása
During the morphogenesis of the epithelial lumen, apical proteins are thought to be transported via endocytic compartments to the site of the forming lumen, although the machinery mediating this transport remains to be elucidated. Rab11 GTPase and its binding protein, FIP5, are important regulators of polarized endocytic transport. In this study, we identify sorting nexin 18 as a novel FIP5-interacting protein and characterize the role of FIP5 and SNX18 in epithelial lumen morphogenesis. We show that FIP5 mediates the transport of apical proteins from apical endosomes to the apical plasma membrane and, along with SNX18, is required for the early stages of apical lumen formation. Furthermore, both proteins bind lipids, and FIP5 promotes the capacity of SNX18 to tubulate membranes, which implies a role for FIP5 and SNX18 in endocytic carrier formation and/or scission. In summary, the present findings support the hypothesis that this FIP5-SNX18 complex plays a pivotal role in the polarized transport of apical proteins during apical lumen initiation in epithelial cells. | 21969467
|