Grainyhead-like 2 (GRHL2) distribution reveals novel pathophysiological differences between human idiopathic pulmonary fibrosis and mouse models of pulmonary fibrosis. Varma, S; Mahavadi, P; Sasikumar, S; Cushing, L; Hyland, T; Rosser, AE; Riccardi, D; Lu, J; Kalin, TV; Kalinichenko, VV; Guenther, A; Ramirez, MI; Pardo, A; Selman, M; Warburton, D American journal of physiology. Lung cellular and molecular physiology
306
L405-19
2014
Kivonat megmutatása
Chronic injury of alveolar lung epithelium leads to epithelial disintegrity in idiopathic pulmonary fibrosis (IPF). We had reported earlier that Grhl2, a transcriptional factor, maintains alveolar epithelial cell integrity by directly regulating components of adherens and tight junctions and thus hypothesized an important role of GRHL2 in pathogenesis of IPF. Comparison of GRHL2 distribution at different stages of human lung development showed its abundance in developing lung epithelium and in adult lung epithelium. However, GRHL2 is detected in normal human lung mesenchyme only at early fetal stage (week 9). Similar mesenchymal reexpression of GRHL2 was also observed in IPF. Immunofluorescence analysis in serial sections from three IPF patients revealed at least two subsets of alveolar epithelial cells (AEC), based on differential GRHL2 expression and the converse fluorescence intensities for epithelial vs. mesenchymal markers. Grhl2 was not detected in mesenchyme in intraperitoneal bleomycin-induced injury as well as in spontaneously occurring fibrosis in double-mutant HPS1 and HPS2 mice, whereas in contrast in a radiation-induced fibrosis model, with forced Forkhead box M1 (Foxm1) expression, an overlap of Grhl2 with a mesenchymal marker was observed in fibrotic regions. Grhl2's role in alveolar epithelial cell plasticity was confirmed by altered Grhl2 gene expression analysis in IPF and further validated by in vitro manipulation of its expression in alveolar epithelial cell lines. Our findings reveal important pathophysiological differences between human IPF and specific mouse models of fibrosis and support a crucial role of GRHL2 in epithelial activation in lung fibrosis and perhaps also in epithelial plasticity. | | 24375798
|
Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Liu, Y; Liu, H; Sauvey, C; Yao, L; Zarnowska, ED; Zhang, SC Nature protocols
8
1670-9
2013
Kivonat megmutatása
Forebrain γ-aminobutyric acid (GABA) interneurons have crucial roles in high-order brain function via modulating network activities and plasticity, and they are implicated in many psychiatric disorders. Availability of enriched functional human forebrain GABA interneurons, especially those from people affected by GABA interneuron deficit disease, will be instrumental to the investigation of disease pathogenesis and development of therapeutics. We describe a protocol for directed differentiation of forebrain GABA interneurons from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in a chemically defined system. In this protocol, human PSCs are first induced to primitive neuroepithelial cells over 10 d, and then patterned to NKX2.1-expressing medial ganglionic eminence progenitors by simple treatment with sonic hedgehog or its agonist purmorphamine over the next 2 weeks. These progenitors generate a nearly pure population of forebrain GABA interneurons by the sixth week. This simple and efficient protocol does not require transgenic modification or cell sorting, and it has been replicated with multiple human ESC and iPSC lines. | Immunocytochemistry | 23928500
|
The specification of telencephalic glutamatergic neurons from human pluripotent stem cells. Boisvert, Erin M, et al. J Vis Exp, (2013)
2013
Kivonat megmutatása
Here, a stepwise procedure for efficiently generating telencephalic glutamatergic neurons from human pluripotent stem cells (PSCs) has been described. The differentiation process is initiated by breaking the human PSCs into clumps which round up to form aggregates when the cells are placed in a suspension culture. The aggregates are then grown in hESC medium from days 1-4 to allow for spontaneous differentiation. During this time, the cells have the capacity to become any of the three germ layers. From days 5-8, the cells are placed in a neural induction medium to push them into the neural lineage. Around day 8, the cells are allowed to attach onto 6 well plates and differentiate during which time the neuroepithelial cells form. These neuroepithelial cells can be isolated at day 17. The cells can then be kept as neurospheres until they are ready to be plated onto coverslips. Using a basic medium without any caudalizing factors, neuroepithelial cells are specified into telencephalic precursors, which can then be further differentiated into dorsal telencephalic progenitors and glutamatergic neurons efficiently. Overall, our system provides a tool to generate human glutamatergic neurons for researchers to study the development of these neurons and the diseases which affect them. | | 23603787
|
Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits. Liu, Y; Weick, JP; Liu, H; Krencik, R; Zhang, X; Ma, L; Zhou, GM; Ayala, M; Zhang, SC Nature biotechnology
31
440-7
2013
Kivonat megmutatása
Dysfunction of basal forebrain cholinergic neurons (BFCNs) and γ-aminobutyric acid (GABA) interneurons, derived from medial ganglionic eminence (MGE), is implicated in disorders of learning and memory. Here we present a method for differentiating human embryonic stem cells (hESCs) to a nearly uniform population of NKX2.1(+) MGE-like progenitor cells. After transplantation into the hippocampus of mice in which BFCNs and some GABA neurons in the medial septum had been destroyed by mu P75-saporin, human MGE-like progenitors, but not ventral spinal progenitors, produced BFCNs that synaptically connected with endogenous neurons, whereas both progenitors generated similar populations of GABA neurons. Mice transplanted with MGE-like but not spinal progenitors showed improvements in learning and memory deficits. These results suggest that progeny of the MGE-like progenitors, particularly BFCNs, contributed to learning and memory. Our findings support the prospect of using human stem cell-derived MGE-like progenitors in developing therapies for neurological disorders of learning and memory. | | 23604284
|