A pituitary-specific enhancer of the POMC gene with preferential activity in corticotrope cells. Langlais, D; Couture, C; Sylvain-Drolet, G; Drouin, J Molecular endocrinology (Baltimore, Md.)
25
348-59
2010
Kivonat megmutatása
Cell-specific expression of the pituitary proopiomelanocortin (POMC) gene depends on the combination of tissue- and cell-restricted transcription factors such as Pitx1 and Tpit. These factors act on the proximal POMC promoter together with transcription factors that integrate inputs from signaling pathways. We now report the identification of an upstream enhancer in the POMC locus that is targeted by the same subset of transcription factors, except Pitx1. This enhancer located at -7 kb in the mouse POMC gene is highly dependent on Tpit for activity. Whereas Tpit requires Pitx1 for action on the promoter, it acts on the -7-kb enhancer as homodimers binding to a palindromic Tpit response element (TpitRE). Both half-sites of the TpitRE palindrome and Tpit homodimerization are required for activity. In vivo, the enhancer exhibits preferential activity in corticotrope cells of the anterior lobe whereas the promoter exhibits preference for intermediate lobe melanotropes. The enhancer is conserved among different species with the TpitRE palindrome localized at the center of conserved sequences. However, the mouse and human -7-kb enhancers do not exhibit conservation of hormone responsiveness and may differ in their relative importance for POMC expression. In summary, pituitary expression of the POMC gene relies on an upstream enhancer that complements the activity of the proximal promoter with Tpit as the major regulator of both regulatory regions. | 21193556
|
Developmental dependence on NurRE and EboxNeuro for expression of pituitary proopiomelanocortin. Lavoie, Pierre-Luc, et al. Mol. Endocrinol., 22: 1647-57 (2008)
2008
Kivonat megmutatása
Cell-specific expression of the pituitary proopiomelanocortin (POMC) gene depends on the combinatorial action of a large number of DNA-binding transcription factors (TFs). These include general and cell-restricted factors, as well as factors that act as effectors of signaling pathways. We have previously defined in the distal POMC promoter a composite regulatory element that contains targets for basic helix-loop-helix TFs conferring cell specificity and for NGFI-B orphan nuclear receptors that are responsive to CRH signaling and to glucocorticoid negative feedback. These factors act on neighboring regulatory elements, the Ebox(Neuro) and NurRE, respectively. Currently, the Ebox(Neuro) is thought to be the target of NeuroD1 during fetal development, but this factor may not account for activity in the adult pituitary; it is also unknown whether the NurRE and NGFI-B-related factors are active before establishment of the hypothalamic-pituitary portal system. In order to assess the importance of these regulatory elements and their cognate TFs throughout pituitary organogenesis and in the adult, we have assessed the activity of mutant POMC promoters in transgenic mice throughout development. These experiments indicate that the Ebox(Neuro) and cognate basic helix-loop-helix factors are required throughout development and in the adult gland, beyond expression of NeuroD1. Similarly, the data reveal sustained importance of the NurRE and its cognate factors throughout pituitary development. These data contrast the sustained dependence throughout development on the same regulatory elements with the highly dynamic patterns of TF expression and the modulation of their activity in response to signaling pathways. | 18388149
|