Context-induced reinstatement of methamphetamine seeking is associated with unique molecular alterations in Fos-expressing dorsolateral striatum neurons. Rubio, FJ; Liu, QR; Li, X; Cruz, FC; Leão, RM; Warren, BL; Kambhampati, S; Babin, KR; McPherson, KB; Cimbro, R; Bossert, JM; Shaham, Y; Hope, BT The Journal of neuroscience : the official journal of the Society for Neuroscience
35
5625-39
2015
Kivonat megmutatása
Context-induced reinstatement of drug seeking is a well established animal model for assessing the neural mechanisms underlying context-induced drug relapse, a major factor in human drug addiction. Neural activity in striatum has previously been shown to contribute to context-induced reinstatement of heroin, cocaine, and alcohol seeking, but not yet for methamphetamine seeking. In this study, we found that context-induced reinstatement of methamphetamine seeking increased expression of the neural activity marker Fos in dorsal but not ventral striatum. Reversible inactivation of neural activity in dorsolateral but not dorsomedial striatum using the GABA agonists muscimol and baclofen decreased context-induced reinstatement. Based on our previous findings that Fos-expressing neurons play a critical role in conditioned drug effects, we assessed whether context-induced reinstatement was associated with molecular alterations selectively induced within context-activated Fos-expressing neurons. We used fluorescence-activated cell sorting to isolate reinstatement-activated Fos-positive neurons from Fos-negative neurons in dorsal striatum and used quantitative PCR to assess gene expression within these two populations of neurons. Context-induced reinstatement was associated with increased expression of the immediate early genes Fos and FosB and the NMDA receptor subunit gene Grin2a in only Fos-positive neurons. RNAscope in situ hybridization confirmed that Grin2a, as well as Grin2b, expression were increased in only Fos-positive neurons from dorsolateral, but not dorsomedial, striatum. Our results demonstrate an important role of dorsolateral striatum in context-induced reinstatement of methamphetamine seeking and that this reinstatement is associated with unique gene alterations in Fos-expressing neurons. | | | 25855177
|
Dorsal raphe neuroinflammation promotes dramatic behavioral stress dysregulation. Howerton, AR; Roland, AV; Bale, TL The Journal of neuroscience : the official journal of the Society for Neuroscience
34
7113-23
2014
Kivonat megmutatása
Impulsivity, risk-taking behavior, and elevated stress responsivity are prominent symptoms of mania, a behavioral state common to schizophrenia and bipolar disorder. Though inflammatory processes activated within the brain are involved in the pathophysiology of both disorders, the specific mechanisms by which neuroinflammation drives manic behavior are not well understood. Serotonin cell bodies originating within the dorsal raphe (DR) play a major role in the regulation of behavioral features characteristic of mania. Therefore, we hypothesized that the link between neuroinflammation and manic behavior may be mediated by actions on serotonergic neurocircuitry. To examine this, we induced local neuroinflammation in the DR by viral delivery of Cre recombinase into interleukin (IL)-1β(XAT) transgenic male and female mice, resulting in overexpressing of the proinflammatory cytokine, IL-1β. For assertion of brain-region specificity of these outcomes, the prefrontal cortex (PFC), as a downstream target of DR serotonergic projections, was also infused. Inflammation within the DR, but not the PFC, resulted in a profound display of manic-like behavior, characterized by increased stress-induced locomotion and responsivity, and reduced risk-aversion/fearfulness. Microarray analysis of the DR revealed a dramatic increase in immune-related genes, and dysregulation of genes important in GABAergic, glutamatergic, and serotonergic neurotransmission. Behavioral and physiological changes were driven by a loss of serotonergic neurons and reduced output as measured by high-performance liquid chromatography, demonstrating inflammation-induced serotonergic hypofunction. Behavioral changes were rescued by acute selective serotonin reuptake inhibitor treatment, supporting the hypothesis that serotonin dysregulation stemming from neuroinflammation in the DR underlies manic-like behaviors. | | | 24849347
|
Autophagy-lysosome pathway associated neuropathology and axonal degeneration in the brains of alpha-galactosidase A-deficient mice. Nelson, MP; Tse, TE; O'Quinn, DB; Percival, SM; Jaimes, EA; Warnock, DG; Shacka, JJ Acta neuropathologica communications
2
20
2014
Kivonat megmutatása
Mutations in the gene for alpha-galactosidase A result in Fabry disease, a rare, X-linked lysosomal storage disorder characterized by a loss of alpha-galactosidase A enzymatic activity. The resultant accumulation of glycosphingolipids throughout the body leads to widespread vasculopathy with particular detriment to the kidneys, heart and nervous system. Disruption in the autophagy-lysosome pathway has been documented previously in Fabry disease but its relative contribution to nervous system pathology in Fabry disease is unknown. Using an experimental mouse model of Fabry disease, alpha-galactosidase A deficiency, we examined brain pathology in 20-24 month old mice with particular emphasis on the autophagy-lysosome pathway.Alpha-galactosidase A-deficient mouse brains exhibited enhanced punctate perinuclear immunoreactivity for the autophagy marker microtubule-associated protein light-chain 3 (LC3) in the parenchyma of several brain regions, as well as enhanced parenchymal and vascular immunoreactivity for lysosome-associated membrane protein-1 (LAMP-1). Ultrastructural analysis revealed endothelial cell inclusions with electron densities and a pronounced accumulation of electron-dense lipopigment. The pons of alpha-galactosidase A-deficient mice in particular exhibited a striking neuropathological phenotype, including the presence of large, swollen axonal spheroids indicating axonal degeneration, in addition to large interstitial aggregates positive for phosphorylated alpha-synuclein that co-localized with the axonal spheroids. Double-label immunofluorescence revealed co-localization of phosphorylated alpha-synuclein aggregates with ubiquitin and LC3.Together these findings indicate widespread neuropathology and focused axonal neurodegeneration in alpha-galactosidase A-deficient mouse brain in association with disruption of the autophagy-lysosome pathway, and provide the basis for future mechanistic assessment of the contribution of the autophagy-lysosome pathway to this histologic phenotype. | | | 24529306
|
Oxidation and nitration in dopaminergic areas of the prefrontal cortex from patients with bipolar disorder and schizophrenia. Kim, HK; Andreazza, AC; Yeung, PY; Isaacs-Trepanier, C; Young, LT Journal of psychiatry & neuroscience : JPN
39
276-85
2014
Kivonat megmutatása
Increased oxidative stress is strongly implicated in bipolar disorder (BD), where protein oxidation, lipid peroxidation and oxidative damage to DNA have been consistently reported. High levels of dopamine (DA) in mania are also well-recognized in patients with BD, and DA produces reactive oxygen species and electron-deficient quinones that can oxidize proteins when it is metabolized.Using immunohistochemistry and acceptor photobleaching Förster resonance energy transfer (FRET), we examined oxidation and nitration of areas immunoreactive for the DA transporter (DAT) and tyrosine hydroxylase (TH) in the postmortem prefrontal cortex from patients with BD, schizophrenia and major depression as well as nonpsychiatric controls.We found increased oxidation of DAT-immunoreactive regions in patients with BD (F3,48 = 6.76, p = 0.001; Dunnett post hoc test p = 0.001) and decreased nitration of TH-immunoreactive regions in both patients with BD (F3,45 = 3.10, p = 0.036; Dunnett post hoc test p = 0.011) and schizophrenia (p = 0.027). On the other hand, we found increased global levels of oxidation in patients with BD (F3,44 = 6.74, p = 0.001; Dunnett post hoc test p = 0.001) and schizophrenia (p = 0.020), although nitration levels did not differ between the groups (F3,46 = 1.75; p = 0.17).Limitations of this study include the use of postmortem brain sections, which may have been affected by factors such as postmortem interval and antemortem agonal states, although demographic factors and postmortem interval were accounted for in our statistical analysis.These findings suggest alterations in levels of protein oxidation and nitration in DA-rich regions of the prefrontal cortex in patients with BD and schizophrenia, but more markedly in those with BD. | Immunohistochemistry | | 24485387
|
Differential contribution of TRPM4 and TRPM5 nonselective cation channels to the slow afterdepolarization in mouse prefrontal cortex neurons. Lei, YT; Thuault, SJ; Launay, P; Margolskee, RF; Kandel, ER; Siegelbaum, SA Frontiers in cellular neuroscience
8
267
2014
Kivonat megmutatása
In certain neurons from different brain regions, a brief burst of action potentials can activate a slow afterdepolarization (sADP) in the presence of muscarinic acetylcholine receptor agonists. The sADP, if suprathreshold, can contribute to persistent non-accommodating firing in some of these neurons. Previous studies have characterized a Ca(2+)-activated non-selective cation (CAN) current (ICAN ) that is thought to underlie the sADP. ICAN depends on muscarinic receptor stimulation and exhibits a dependence on neuronal activity, membrane depolarization and Ca(2+)-influx similar to that observed for the sADP. Despite the widespread occurrence of sADPs in neurons throughout the brain, the molecular identity of the ion channels underlying these events, as well as ICAN , remains uncertain. Here we used a combination of genetic, pharmacological and electrophysiological approaches to characterize the molecular mechanisms underlying the muscarinic receptor-dependent sADP in layer 5 pyramidal neurons of mouse prefrontal cortex. First, we confirmed that in the presence of the cholinergic agonist carbachol a brief burst of action potentials triggers a prominent sADP in these neurons. Second, we confirmed that this sADP requires activation of a PLC signaling cascade and intracellular calcium signaling. Third, we obtained direct evidence that the transient receptor potential (TRP) melastatin 5 channel (TRPM5), which is thought to function as a CAN channel in non-neural cells, contributes importantly to the sADP in the layer 5 neurons. In contrast, the closely related TRPM4 channel may play only a minor role in the sADP. | | | 25237295
|
Detection of molecular alterations in methamphetamine-activated Fos-expressing neurons from a single rat dorsal striatum using fluorescence-activated cell sorting (FACS). Liu, QR; Rubio, FJ; Bossert, JM; Marchant, NJ; Fanous, S; Hou, X; Shaham, Y; Hope, BT Journal of neurochemistry
128
173-85
2014
Kivonat megmutatása
Methamphetamine and other drugs activate a small proportion of all neurons in the brain. We previously developed a fluorescence-activated cell sorting (FACS)-based method to characterize molecular alterations induced selectively in activated neurons that express the neural activity marker Fos. However, this method requires pooling samples from many rats. We now describe a modified FACS-based method to characterize molecular alterations in Fos-expressing dorsal striatal neurons from a single rat using a multiplex pre-amplification strategy. Fos and NeuN (a neuronal marker) immunohistochemistry indicate that 5-6% of dorsal striatum neurons were activated 90 min after acute methamphetamine injections (5 mg/kg, i.p.) while less than 0.5% of neurons were activated by saline injections. We used FACS to separate NeuN-labeled neurons into Fos-positive and Fos-negative neurons and assessed mRNA expression using RT-qPCR from as little as five Fos-positive neurons. Methamphetamine induced 3-20-fold increases of immediate early genes arc, homer-2, c-fos, fosB, and its isoforms (ΔfosB and a novel isoform ΔfosB-2) in Fos-positive but not Fos-negative neurons. Immediate early gene mRNA induction was 10-fold lower or absent when assessed in unsorted samples from single dorsal striatum homogenates. Our modified method makes it feasible to study unique molecular alterations in neurons activated by drugs or drug-associated cues in complex addiction models. Methamphetamine and other drugs activate a small proportion of all neurons in the brain. We here report an improved method to characterize molecular alterations induced selectively in activated neurons that express the neural activity marker Fos. We used FACS along with targeted PCR pre-amplification to assess acute methamphetamine-induced gene expression from as few as 5 Fos-expressing neurons from a single rat dorsal striatum. Methamphetamine induced 3-20-fold increases of immediate early genes (IEGs) in Fos-positive but not Fos-negative neurons. Targeted PCR pre-amplification makes it feasible to study unique molecular alterations in neurons activated by drugs or drug-associated cues in complex addiction models. | | | 23895375
|
Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. Aschauer, DF; Kreuz, S; Rumpel, S PloS one
8
e76310
2013
Kivonat megmutatása
Recombinant Adeno-associated virus vectors (rAAV) are widely used for gene delivery and multiple naturally occurring serotypes have been harnessed to target cells in different tissues and organs including the brain. Here, we provide a detailed and quantitative analysis of the transduction profiles of rAAV vectors based on six of the most commonly used serotypes (AAV1, AAV2, AAV5, AAV6, AAV8, AAV9) that allows systematic comparison and selection of the optimal vector for a specific application. In our studies we observed marked differences among serotypes in the efficiency to transduce three different brain regions namely the striatum, hippocampus and neocortex of the mouse. Despite the fact that the analyzed serotypes have the general ability to transduce all major cell types in the brain (neurons, microglia, astrocytes and oligodendrocytes), the expression level of a reporter gene driven from a ubiquitous promoter varies significantly for specific cell type / serotype combinations. For example, rAAV8 is particularly efficient to drive transgene expression in astrocytes while rAAV9 appears well suited for the transduction of cortical neurons. Interestingly, we demonstrate selective retrograde transport of rAAV5 along axons projecting from the ventral part of the entorhinal cortex to the dentate gyrus. Furthermore, we show that self-complementing rAAV can be used to significantly decrease the time required for the onset of transgene expression in the mouse brain. | | | 24086725
|
Neuroglobin over expressing mice: expression pattern and effect on brain ischemic infarct size. Raida, Z; Hundahl, CA; Nyengaard, JR; Hay-Schmidt, A PloS one
8
e76565
2013
Kivonat megmutatása
Stroke is a major cause of death and severe disability, but effective treatments are limited. Neuroglobin, a neuronal heme-globin, has been advocated as a novel pharmacological target in combating stroke and neurodegenerative disorders based on cytoprotective properties. Using thoroughly validated antibodies and oligos, we give a detailed brain anatomical characterization of transgenic mice over expressing Neuroglobin. Moreover, using permanent middle artery occlusion the effect of elevated levels of Neuroglobin on ischemic damage was studied. Lastly, the impact of mouse strain genetic background on ischemic damage was investigated.A four to five fold increase in Neuroglobin mRNA and protein expression was seen in the brain of transgenic mice. A β-actin promoter was used to drive Neuroglobin over expression, but immunohistochemistry and in situ hybridization showed over expression to be confined to primarily the cortex, hippocampus, cerebellum, and only in neurons. The level and expression pattern of endogenous Neuroglobin was unaffected by insertion of the over expressing Ngb transgene. Neuroglobin over expression resulted in a significant reduction in infarct volume 24 hours after ischemia. Immunohistochemistry showed no selective sparing of Neuroglobin expressing cells in the ischemic core or penumbra. A significant difference in infarct volume was found between mice of the same strain, but from different colonies.In contrast to some previous reports, Neuroglobin over expression is not global but confined to a few well-defined brain regions, and only in neurons. This study confirms previous reports showing a correlation between reduced infarct volume and elevated Neuroglobin levels, but underlines the need to study the likely contribution from compensatory mechanisms to the phenotype following a genetic perturbation. We also stress, that care should be taken when comparing results where different mouse strains and colonies have been used due to large genetic background contribution to the observed phenotype. | | | 24098534
|
A rapid fluorescent method to quantify neuronal loss after experimental intracerebral hemorrhage. Chen-Roetling, J; Lu, X; Regan, KA; Regan, RF Journal of neuroscience methods
216
128-36
2013
Kivonat megmutatása
Neuronal loss in tissue surrounding an intracerebral hemorrhage (ICH) is usually quantified by labor-intensive histological methods that are subject to bias. Fluorescent protein expression has been successfully used as a marker of cell viability in vitro and in retinal studies in vivo, but not in any ICH model to date. The potential of this approach was investigated using transgenic mice that constitutively express the red fluorescent protein variant dTomato in central neurons under the control of the Thy1 promoter. Breeding and growth of these mice were similar to their wild-type counterparts; behavioral phenotyping by digital analysis of home cage video recordings detected no differences. Bright fluorescence was evident in fresh brain samples with minimal background fluorescence, and was reduced in tissue surrounding the hematoma. In order to assess fluorescence loss as an injury marker in a planned study, these mice were crossed with heme oxygenase (HO)-2 knockouts and wild-type controls; striatal hemorrhage was induced by stereotactic injection of collagenase. Fluorescence in hemorrhagic striata was reduced to 86.4±3.9%, 62.2±5.1%, and 58.3±3.0% of contra-lateral on days 1, 4 and 8, respectively, and correlated closely with reduction in striatal cell viability as quantified by MTT assay. HO-2 knockout and wild-type values did not differ significantly. Similar results were observed with stereological cell counts of striatal neurons identified by NeuN immunoreactivity. These results suggest that loss of constitutive dTomato fluorescence is an accurate and efficient marker of neuronal loss in tissue surrounding a striatal hematoma. | | | 23583700
|
Unique gene alterations are induced in FACS-purified Fos-positive neurons activated during cue-induced relapse to heroin seeking. Fanous, S; Guez-Barber, DH; Goldart, EM; Schrama, R; Theberge, FR; Shaham, Y; Hope, BT Journal of neurochemistry
124
100-8
2013
Kivonat megmutatása
Cue-induced heroin seeking after prolonged withdrawal is associated with neuronal activation and altered gene expression in prefrontal cortex (PFC). However, these previous studies assessed gene expression in all neurons regardless of their activity state during heroin seeking. Using Fos as a marker of neural activity, we describe distinct molecular alterations induced in activated versus non-activated neurons during cue-induced heroin seeking after prolonged withdrawal. We trained rats to self-administer heroin for 10 days (6 h/day) and assessed cue-induced heroin seeking in extinction tests after 14 or 30 days. We used fluorescent-activated cell sorting (FACS) to purify Fos-positive and Fos-negative neurons from PFC 90 min after extinction testing. Flow cytometry showed that Fos-immunoreactivity was increased in less than 10% of sparsely distributed PFC neurons. mRNA levels of the immediate early genes fosB, arc, egr1, and egr2, as well as npy and map2k6, were increased in Fos-positive, but not Fos-negative, neurons. In support of these findings, double-label immunohistochemistry indicated substantial coexpression of neuropeptide Y (NPY)- and Arc-immunoreactivity in Fos-positive neurons. Our data indicate that cue-induced relapse to heroin seeking after prolonged withdrawal induces unique molecular alterations within activated PFC neurons that are distinct from those observed in the surrounding majority of non-activated neurons. | | | 23113797
|