Tobacco carcinogen NNK transporter MRP2 regulates CFTR function in lung epithelia: implications for lung cancer. Chunying Li,John D Schuetz,Anjaparavanda P Naren Cancer letters
292
2009
Kivonat megmutatása
Lung cancer is the leading cause of cancer death in the United States. About 85% of all lung cancers are linked to tobacco smoke, in which more than 50 lung carcinogens have been identified and one of the most abundant is 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The human lung epithelium constitutes the first line of defense against tobacco-specific carcinogens, in which apically-localized receptors, transporters, and ion channels in the airway may play a critical role in this native defense against tobacco smoke. Here we showed that multidrug resistance protein-2 (MRP2) and cystic fibrosis transmembrane conductance regulator (CFTR), two ATP-binding cassette (ABC) transporters, are localized to the apical surfaces of plasma membrane in polarized lung epithelial cells. We observed that there is a functional coupling between CFTR and MRP2 that may be mediated by PDZ proteins. We also observed the existence of a macromolecular complex containing CFTR, MRP2, and PDZ proteins, which might form the basis for the regulatory cooperation between these two ABC transporters. Our results have important implications for cigarette smoke-associated lung diseases (such as smoke-related emphysema, chronic obstructive pulmonary disease, and lung cancer). Teljes cikk | 20089353
|
ABCG2/BCRP decreases the transfer of a food-born chemical carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in perfused term human placenta. Päivi Myllynen,Maria Kummu,Tiina Kangas,Mika Ilves,Elina Immonen,Jaana Rysä,Rauna Pirilä,Anni Lastumäki,Kirsi H Vähäkangas Toxicology and applied pharmacology
232
2008
Kivonat megmutatása
We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of (14)C-PhIP (2 microM) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72+/-0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of (14)C-PhIP from maternal to fetal circulation (FM ratio 0.90+/-0.08 at 6 h, p<0.05) while the ABCC1/ABCC2 inhibitor probenecid had no effect (FM ratio at 6 h 0.75+/-0.10, p=0.84). There was a negative correlation between the expression of ABCG2 protein in perfused tissue and the FM ratio of (14)C-PhIP (R=-0.81, p<0.01) at the end of the perfusion. The expression of ABCC2 protein did not correlate with FM ratio of PhIP (R: -0.11, p=0.76). In addition, PhIP induced the expression of ABC transporters in BeWo cells at mRNA level. In conclusion, our data indicates that ABCG2 decreases placental transfer of (14)C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarcinoma cells. | 18680760
|
Specific detection of multidrug resistance proteins MRP1, MRP2, MRP3, MRP5, and MDR3 P-glycoprotein with a panel of monoclonal antibodies. Scheffer, G L, et al. Cancer Res., 60: 5269-77 (2000)
1999
Kivonat megmutatása
Tumor cells may display a multidrug resistance phenotype by overexpression of ATP binding cassette transporter genes such as multidrug resistance (MDR) 1 P-glycoprotein (P-gp) or the multidrug resistance protein 1 (MRP1). MDR3 P-gp is a close homologue of MDR1 P-gp, but its role in MDR is probably minor and remains to be established. The MRP1 protein belongs to a family of at least six members. Three of these, i.e., MRP1, MRP2, and MRP3, can transport MDR drugs and could be involved in MDR. The substrate specificity of the other family members remains to be defined. Specific monoclonal antibodies are required for wide-scale studies on the putative contribution of these closely related transporter proteins to MDR. In this report, we describe the extensive characterization of a panel of monoclonal antibodies (Mabs) detecting several MDR-related transporter proteins in both human and animal tissues. The panel consists of P3II-1 and P3II-26 for MDR3 P-gp; MRPr1, MRPm6, MRPm5, and MIB6 for MRP1; M2I-4, M2II-12, M2III-5 and M2III-6 for MRP2; M3II-9 and M3II-21 for MRP3; and M5I-1 and M5II-54 for MRP5. All Mabs in the panel appeared to be fully specific for their cognate antigens, both in Western blots and cytospin preparations, as revealed by lack of cross-reactivity with any of the other family members. Indeed, all Mabs were very effective in detecting their respective antigens in cytospins of transfected cell lines, whereas in flow cytometric and immunohistochemical analyses, distinct differences in reactivity and suitability were noted. These Mabs should become valuable tools in studying the physiological functions of these transporter proteins, in screening procedures for the absence of these proteins in hereditary metabolic (liver) diseases, and in studying the possible contributions of these molecules to MDR in cancer patients. | 11016657
|
Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Paulusma, C C, et al. Science, 271: 1126-8 (1996)
1996
Kivonat megmutatása
The human Dubin-Johnson syndrome and its animal model, the TR(-) rat, are characterized by a chronic conjugated hyperbilirubinemia. TR(-) rats are defective in the canalicular multispecific organic anion transporter (cMOAT), which mediates hepatobiliary excretion of numerous organic anions. The complementary DNA for rat cmoat, a homolog of the human multidrug resistance gene (hMRP1), was isolated and shown to be expressed in the canalicular membrane of hepatocytes. In the TR(-) rat, a single-nucleotide deletion in this gene resulted in a reduced messenger RNA level and absence of the protein. It is likely that this mutation accounts for the TR(-) phenotype. | 8599091
|