Aging-related changes in the iron status of skeletal muscle. DeRuisseau, KC; Park, YM; DeRuisseau, LR; Cowley, PM; Fazen, CH; Doyle, RP Experimental gerontology
48
1294-302
2013
Kivonat megmutatása
The rise in non-heme iron (NHI) concentration observed in skeletal muscle of aging rodents is thought to contribute to the development of sarcopenia. The source of the NHI has not been identified, nor have the physiological ramifications of elevated iron status in aged muscle been directly examined. Therefore, we assessed plantaris NHI and heme iron (HI) levels in addition to expression of proteins involved in iron uptake (transferrin receptor-1; TfR1), storage (ferritin), export (ferroportin; FPN), and regulation (iron regulatory protein-1 (IRP1) and -2 (IRP2)) of male F344xBN F1 rats (n=10/group) of various ages (8, 18, 28, 32, and 36 months) to further understand iron regulation in aging muscle. In a separate experiment, iron chelator (pyridoxal isonicotinoyl hydrazone; PIH) or vehicle was administered to male F344xBN F1 rats (n=8/group) beginning at 30 months of age to assess the impact on plantaris muscle mass and function at ~36 months of age. Principle findings revealed the increased NHI concentration in old age was consistent with concentrating effects of muscle atrophy and reduction in HI levels, with no change in the total iron content of the muscle. The greatest increase in muscle iron content occurred during the period of animal growth and was associated with downregulation of TfR1 and IRP2 expression. Ferritin upregulation did not occur until senescence and the protein remained undetectable during the period of muscle iron content elevation. Lastly, administration of PIH did not significantly (pgreater than 0.05) impact NHI or measures of muscle atrophy or contractile function. In summary, this study confirms that the elevated NHI concentration in old age is largely due to the loss in muscle mass. The increased muscle iron content during aging does not appear to associate with cytosolic ferritin storage, but the functional consequences of elevated iron status in old age remains to be determined. | Western Blotting | 23994517
|
Iron and iron regulatory proteins in amoeboid microglial cells are linked to oligodendrocyte death in hypoxic neonatal rat periventricular white matter through production of proinflammatory cytokines and reactive oxygen/nitrogen species. Rathnasamy, G; Ling, EA; Kaur, C The Journal of neuroscience : the official journal of the Society for Neuroscience
31
17982-95
2010
Kivonat megmutatása
This study was aimed to examine the role of iron in causing periventricular white matter (PWM) damage following a hypoxic injury in the developing brain. Along with iron, the expression of iron regulatory proteins (IRPs) and transferrin receptor (TfR), which are involved in iron acquisition, was also examined in the PWM by subjecting 1-d-old Wistar rats to hypoxia. Apart from an increase in iron levels in PWM, Perls' iron staining showed an increase of intracellular iron in the preponderant amoeboid microglial cells (AMCs) in the tissue. In response to hypoxia, the protein levels of IRP1, IRP2, and TfR in PWM and AMCs were significantly increased. In primary microglial cultures, administration of iron chelator deferoxamine reduced the generation of iron-induced reactive oxygen and nitrogen species and proinflammatory cytokines such as tumor necrosis factor-α and interleukin-1β. Primary oligodendrocytes treated with conditioned medium from hypoxic microglia exhibited reduced glutathione levels, increased lipid peroxidation, upregulated caspase-3 expression, and reduced proliferation. This was reversed to control levels on treatment with conditioned medium from deferoxamine treated hypoxic microglia; also, there was reduction in apoptosis of oligodendrocytes. The present results suggest that excess iron derived primarily from AMCs might be a mediator of oligodendrocyte cell death in PWM following hypoxia in the neonatal brain. | Western Blotting | 22159112
|