Oxidative stress inhibits nuclear protein export by multiple mechanisms that target FG nucleoporins and Crm1. Crampton, N; Kodiha, M; Shrivastava, S; Umar, R; Stochaj, U Molecular biology of the cell
20
5106-16
2009
Kivonat megmutatása
Nuclear transport of macromolecules is regulated by the physiological state of the cell and thus sensitive to stress. To define the molecular mechanisms that control nuclear export upon stress, cells were exposed to nonlethal concentrations of the oxidant diethyl maleate (DEM). These stress conditions inhibited chromosome region maintenance-1 (Crm1)-dependent nuclear export and increased the association between Crm1 and Ran. In addition, we identified several repeat-containing nucleoporins implicated in nuclear export as targets of oxidative stress. As such, DEM treatment reduced Nup358 levels at the nuclear envelope and redistributed Nup98. Furthermore, oxidative stress led to an increase in the apparent molecular masses of Nup98, Nup214, and Nup62. Incubation with phosphatase or beta-N-acetyl-hexosaminidase showed that oxidative stress caused the phosphorylation of Nup98, Nup62, and Nup214 as well as O-linked N-acetylglucosamine modification of Nup62 and Nup214. These oxidant-induced changes in nucleoporin modification correlated first with the increased binding of Nup62 to the exporter Crm1 and second with the reduced interaction of Nup62 with other FxFG-containing nucleoporins. Together, oxidative stress up-regulated the binding of Crm1 to Ran and affected multiple repeat-containing nucleoporins by changing their localization, phosphorylation, O-glycosylation, or interaction with other transport components. We propose that the combination of these events contributes to the stress-dependent regulation of Crm1-mediated protein export. | 19828735
|
Association with the cellular export receptor CRM 1 mediates function and intracellular localization of Epstein-Barr virus SM protein, a regulator of gene expression. Boyle, SM; Ruvolo, V; Gupta, AK; Swaminathan, S Journal of virology
73
6872-81
1998
Kivonat megmutatása
Splicing and posttranscriptional processing of eukaryotic gene transcripts are linked to their nuclear export and cytoplasmic expression. Unspliced pre-mRNAs and intronless transcripts are thus inherently poorly expressed. Nevertheless, human and animal viruses encode essential genes as single open reading frames or in the intervening sequences of other genes. Many retroviruses have evolved mechanisms to facilitate nuclear export of their unspliced mRNAs. For example, the human immunodeficiency virus RNA-binding protein Rev associates with the soluble cellular export receptor CRM 1 (exportin 1), which mediates nucleocytoplasmic translocation of Rev-HIV RNA complexes through the nuclear pore. The transforming human herpesvirus Epstein-Barr virus (EBV) expresses a nuclear protein, SM, early in its lytic cycle; SM binds RNA and posttranscriptionally activates expression of certain intronless lytic EBV genes. Here we show that both the trans-activation function and cytoplasmic translocation of SM are dependent on association with CRM 1 in vivo. SM is also shown to be associated in vivo with other components of the CRM 1 export pathway, including the small GTPase Ran and the nucleoporin CAN/Nup214. SM is shown to be present in the cytoplasm, nucleoplasm, and nuclear envelope of transfected cells. Mutation of a leucine-rich region (LRR) of SM inhibited CRM 1-mediated cytoplasmic translocation and SM activity, as did leptomycin B, an inhibitor of CRM 1 complex formation. Surprisingly, however, leptomycin B treatment and mutation of the LRR both led to SM becoming more tightly attached to intranuclear structures. These findings suggest a model in which SM is not merely a soluble carrier protein for RNA but rather is bound directly to intranuclear proteins, possibly including the nuclear pore complex. | 10400785
|
The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. Fornerod, M; van Deursen, J; van Baal, S; Reynolds, A; Davis, D; Murti, KG; Fransen, J; Grosveld, G The EMBO journal
16
807-16
1997
Kivonat megmutatása
The oncogenic nucleoporin CAN/Nup214 is essential in vertebrate cells. Its depletion results in defective nuclear protein import, inhibition of messenger RNA export and cell cycle arrest. We recently found that CAN associates with proteins of 88 and 112 kDa, which we have now cloned and characterized. The 88 kDa protein is a novel nuclear pore complex (NPC) component, which we have named Nup88. Depletion of CAN from the NPC results in concomitant loss of Nup88, indicating that the localization of Nup88 to the NPC is dependent on CAN binding. The 112 kDa protein is the human homologue of yeast CRM1, a protein known to be required for maintenance of correct chromosome structure. This human CRM1 (hCRM1) localized to the NPC as well as to the nucleoplasm. Nuclear overexpression of the FG-repeat region of CAN, containing its hCRM1-interaction domain, resulted in depletion of hCRM1 from the NPC. In CAN-/- mouse embryos lacking CAN, hCRM1 remained in the nuclear envelope, suggesting that this protein can also bind to other repeat-containing nucleoporins. Lastly, hCRM1 shares a domain of significant homology with importin-beta, a cytoplasmic transport factor that interacts with nucleoporin repeat regions. We propose that hCRM1 is a soluble nuclear transport factor that interacts with the NPC. | 9049309
|