APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Mansfeld, Jörg, et al. Nat. Cell Biol., 13: 1234-43 (2011)
2011
显示摘要
Faithful chromosome segregation during mitosis depends on the spindle assembly checkpoint (SAC), which monitors kinetochore attachment to the mitotic spindle. Unattached kinetochores generate mitotic checkpoint proteins complexes (MCCs) that bind and inhibit the anaphase-promoting complex, or cyclosome (APC/C). How the SAC proficiently inhibits the APC/C but still allows its rapid activation when the last kinetochore attaches to the spindle is important for the understanding of how cells maintain genomic stability. We show that the APC/C subunit APC15 is required for the turnover of the APC/C co-activator CDC20 and release of MCCs during SAC signalling but not for APC/C activity per se. In the absence of APC15, MCCs and ubiquitylated CDC20 remain 'locked' onto the APC/C, which prevents the ubiquitylation and degradation of cyclin B1 when the SAC is satisfied. We conclude that APC15 mediates the constant turnover of CDC20 and MCCs on the APC/C to allow the SAC to respond to the attachment state of kinetochores. | 21926987
|
Homeostatic control of mitotic arrest. Varetti, Gianluca, et al. Mol. Cell, 44: 710-20 (2011)
2011
显示摘要
The spindle assembly checkpoint (SAC) restricts mitotic exit to cells that have completed chromosome-microtubule attachment. Cdc20 is a bifunctional protein. In complex with SAC proteins Mad2, BubR1, and Bub3, Cdc20 forms the mitotic checkpoint complex (MCC), which binds the anaphase-promoting complex (APC/C) and inhibits its mitotic exit-promoting activity. When devoid of SAC proteins, Cdc20 serves as an APC/C coactivator and promotes mitotic exit. During mitotic arrest, Cdc20 is continuously degraded via ubiquitin-dependent proteolysis and resynthesized. It is believed that this cycle keeps the levels of Cdc20 below a threshold above which Cdc20 would promote mitotic exit. We report that p31(comet), a checkpoint antagonist, is necessary for mitotic destabilization of Cdc20. p31(comet) depletion stabilizes the MCC, super-inhibits the APC/C, and delays mitotic exit, indicating that Cdc20 proteolysis in prometaphase opposes the checkpoint. Our studies reveal a homeostatic network in which checkpoint-sustaining and -repressing forces oppose each other during mitotic arrest and suggest ways for enhancing the sensitivity of cancer cells to antitubulin chemotherapeutics. | 22152475
|