Angiogenesis inhibitor vasohibin-1 enhances stress resistance of endothelial cells via induction of SOD2 and SIRT1. Miyashita, Hiroki, et al. PLoS ONE, 7: e46459 (2012)
2012
显示摘要
Vasohibin-1 (VASH1) is isolated as an endothelial cell (EC)-produced angiogenesis inhibitor. We questioned whether VASH1 plays any role besides angiogenesis inhibition, knocked-down or overexpressed VASH1 in ECs, and examined the changes of EC property. Knock-down of VASH1 induced premature senescence of ECs, and those ECs were easily killed by cellular stresses. In contrast, overexpression of VASH1 made ECs resistant to premature senescence and cell death caused by cellular stresses. The synthesis of VASH1 was regulated by HuR-mediated post-transcriptional regulation. We sought to define the underlying mechanism. VASH1 increased the expression of (superoxide dismutase 2) SOD2, an enzyme known to quench reactive oxygen species (ROS). Simultaneously, VASH1 augmented the synthesis of sirtuin 1 (SIRT1), an anti-aging protein, which improved stress tolerance. Paraquat generates ROS and causes organ damage when administered in vivo. More VASH1 (+/-) mice died due to acute lung injury caused by paraquat. Intratracheal administration of an adenovirus vector encoding human VASH1 augmented SOD2 and SIRT1 expression in the lungs and prevented acute lung injury caused by paraquat. Thus, VASH1 is a critical factor that improves the stress tolerance of ECs via the induction of SOD2 and SIRT1. | 23056314
|
Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. Watanabe, Kazuhide, et al. J. Clin. Invest., 114: 898-907 (2004)
2004
显示摘要
Negative feedback is a crucial physiological regulatory mechanism, but no such regulator of angiogenesis has been established. Here we report a novel angiogenesis inhibitor that is induced in endothelial cells (ECs) by angiogenic factors and inhibits angiogenesis in an autocrine manner. We have performed cDNA microarray analysis to survey VEGF-inducible genes in human ECs. We characterized one such gene, KIAA1036, whose function had been uncharacterized. The recombinant protein inhibited migration, proliferation, and network formation by ECs as well as angiogenesis in vivo. This inhibitory effect was selective to ECs, as the protein did not affect the migration of smooth muscle cells or fibroblasts. Specific elimination of the expression of KIAA1036 in ECs restored their responsiveness to a higher concentration of VEGF. The expression of KIAA1036 was selective to ECs, and hypoxia or TNF-alpha abrogated its inducible expression. As this molecule is preferentially expressed in ECs, we designated it "vasohibin." Transfection of Lewis lung carcinoma cells with the vasohibin gene did not affect the proliferation of cancer cells in vitro, but did inhibit tumor growth and tumor angiogenesis in vivo. We propose vasohibin to be an endothelium-derived negative feedback regulator of angiogenesis. | 15467828
|