Gap43 transcription modulation in the adult brain depends on sensory activity and synaptic cooperation. Rosskothen-Kuhl, N; Illing, RB PloS one
9
e92624
2014
显示摘要
Brain development and learning is accompanied by morphological and molecular changes in neurons. The growth associated protein 43 (Gap43), indicator of neurite elongation and synapse formation, is highly expressed during early stages of development. Upon maturation of the brain, Gap43 is down-regulated by most neurons with the exception of subdivisions such as the CA3 region of hippocampus, the lateral superior olive (LSO) and the central inferior colliculus (CIC). Little is known about the regulation of this mRNA in adult brains. We found that the expression of Gap43 mRNA in specific neurons can be modulated by changing sensory activity of the adult brain. Using the central auditory system of rats as a model, Gap43 protein and mRNA levels were determined in LSO and CIC of hearing-experienced rats unilaterally or bilaterally deafened or unilaterally stimulated by a cochlear implant (CI). Our data indicate that Gap43 is a marker useful beyond monitoring neuronal growth and synaptogenesis, reflecting also specific patterns of synaptic activities on specific neurons. Thus, unilateral loss of input to an adult auditory system directly causes asymmetrical expression of Gap43 mRNA between LSOs or CICs on both sides of the brainstem. This consequence can be prevented by simple-patterned stimulation of a dysfunctional ear by way of a CI. We suggest that as a function of input balance and activity pattern, Gap43 mRNA expression changes as cells associate converging afferent signals. | | | 24647228
|
Developmentally dynamic colocalization patterns of DSCAM with adhesion and synaptic proteins in the mouse retina. de Andrade, GB; Kunzelman, L; Merrill, MM; Fuerst, PG Molecular vision
20
1422-33
2014
显示摘要
The Down syndrome cell adhesion molecule (Dscam) gene is required for normal dendrite arborization and lamination in the mouse retina. In this study, we characterized the developmental localization of the DSCAM protein to better understand the postnatal stages of retinal development during which laminar disorganization occur in the absence of the protein.Immunohistochemistry and colocalization analysis software were used to assay the localization of the DSCAM protein during development of the retina.We found that DSCAM was initially localized diffusely throughout mouse retinal neurites but then adopted a punctate distribution. DSCAM colocalized with catenins in the adult retina but was not detected at the active zone of chemical synapses, electrical synapses, and tight junctions. Further analysis identified a wave of colocalization between DSCAM and numerous synaptic and junction proteins coinciding with synaptogenesis between bipolar and retinal ganglion cells.Research presented in this study expands our understanding of DSCAM function by characterizing its location during the development of the retina and identifies temporally regulated localization patterns as an important consideration in understanding the function of adhesion molecules in neural development. | | | 25352748
|
Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat. Amemori, T; Romanyuk, N; Jendelova, P; Herynek, V; Turnovcova, K; Prochazka, P; Kapcalova, M; Cocks, G; Price, J; Sykova, E Stem cell research & therapy
4
68
2013
显示摘要
A growing number of studies have highlighted the potential of stem cell and more-differentiated neural cell transplantation as intriguing therapeutic approaches for neural repair after spinal cord injury (SCI).A conditionally immortalized neural stem cell line derived from human fetal spinal cord tissue (SPC-01) was used to treat a balloon-induced SCI. SPC-01 cells were implanted into the lesion 1 week after SCI. To determine the feasibility of tracking transplanted stem cells, a portion of the SPC-01 cells was labeled with poly-L-lysine-coated superparamagnetic iron-oxide nanoparticles, and the animals grafted with labeled cells underwent magnetic resonance imaging. Functional recovery was evaluated by using the BBB and plantar tests, and lesion morphology, endogenous axonal sprouting and graft survival, and differentiation were analyzed. Quantitative polymerase chain reaction (qPCR) was used to evaluate the effect of transplanted SPC-01 cells on endogenous regenerative processes.Transplanted animals displayed significant motor and sensory improvement 2 months after SCI, when the cells robustly survived in the lesion and partially filled the lesion cavity. qPCR revealed the increased expression of rat and human neurotrophin and motor neuron genes. The grafted cells were immunohistologically positive for glial fibrillary acidic protein (GFAP); however, we found 25% of the cells to be positive for Nkx6.1, an early motor neuron marker. Spared white matter and the robust sprouting of growth-associated protein 43 (GAP43)(+) axons were found in the host tissue. Four months after SCI, the grafted cells matured into Islet2(+) and choline acetyltransferase (ChAT)(+) neurons, and the graft was grown through with endogenous neurons. Grafted cells labeled with poly-L-lysine-coated superparamagnetic nanoparticles before transplantation were detected in the lesion on T2-weighted images as hypointense spots that correlated with histologic staining for iron and the human mitochondrial marker MTCO2.The transplantation of SPC-01 cells produced significant early functional improvement after SCI, suggesting an early neurotrophic action associated with long-term restoration of the host tissue, making the cells a promising candidate for future cell therapy in patients with SCI. | | | 23759119
|
Up-regulation of GAP-43 in the chinchilla ventral cochlear nucleus after carboplatin-induced hearing loss: correlations with inner hair cell loss and outer hair cell loss. Kraus, KS; Ding, D; Jiang, H; Kermany, MH; Mitra, S; Salvi, RJ Hearing research
302
74-82
2013
显示摘要
Inner ear damage leads to nerve fiber growth and synaptogenesis in the ventral cochlear nucleus (VCN). In this study, we documented the relationship between hair cell loss patterns and synaptic plasticity in the chinchilla VCN using immunolabeling of the growth associated protein-43 (GAP-43), a protein associated with axon outgrowth and modification of presynaptic endings. Unilateral round window application of carboplatin caused hair cell degeneration in which inner hair cells (IHC) were more vulnerable than outer hair cells (OHC). One month after carboplatin treatment (0.5-5 mg/ml), we observed varying patterns of cochlear hair cell loss and GAP-43 expression in VCN. Both IHC loss and OHC loss were strongly correlated with increased GAP-43 immunolabeling in the ipsilateral VCN. We speculate that two factors might promote the expression of GAP-43 in the VCN; one is the loss of afferent input through IHC or the associated type I auditory nerve fibers. The other occurs when the medial olivocochlear efferent neurons lose their cochlear targets, the OHC, and may as compensation increase their synapse numbers in the VCN. | | | 23707995
|
Chondroitinase enhances cortical map plasticity and increases functionally active sprouting axons after brain injury. Harris, NG; Nogueira, MS; Verley, DR; Sutton, RL Journal of neurotrauma
30
1257-69
2013
显示摘要
The beneficial effect of interventions with chondroitinase ABC enzyme to reduce axon growth-inhibitory chondroitin sulphate side chains after central nervous system injuries has been mainly attributed to enhanced axonal sprouting. After traumatic brain injury (TBI), it is unknown whether newly sprouting axons that occur as a result of interventional strategies are able to functionally contribute to existing circuitry, and it is uncertain whether maladaptive sprouting occurs to increase the well-known risk for seizure activity after TBI. Here, we show that after a controlled cortical impact injury in rats, chondroitinase infusion into injured cortex at 30 min and 3 days reduced c-Fos⁺ cell staining resulting from the injury alone at 1 week postinjury, indicating that at baseline, abnormal spontaneous activity is likely to be reduced, not increased, with this type of intervention. c-Fos⁺ cell staining elicited by neural activity from stimulation of the affected forelimb 1 week after injury was significantly enhanced by chondroitinase, indicating a widespread effect on cortical map plasticity. Underlying this map plasticity was a larger contribution of neuronal, rather than glial cells and an absence of c-Fos⁺ cells surrounded by perineuronal nets that were normally present in stimulated naïve rats. After injury, chondroitin sulfate proteoglycan digestion produced the expected increase in growth-associated protein 43-positive axons and perikarya, of which a significantly greater number were double labeled for c-Fos after intervention with chondroitinase, compared to vehicle. These data indicate that chondroitinase produces significant gains in cortical map plasticity after TBI, and that either axonal sprouting and/or changes in perineuronal nets may underlie this effect. Chondroitinase dampens, rather than increases nonspecific c-Fos activity after brain injury, and induction of axonal sprouting is not maladaptive because greater numbers are functionally active and provide a significant contribution to forelimb circuitry after brain injury. | | | 23517225
|
Proteoglycan abnormalities in olfactory epithelium tissue from subjects diagnosed with schizophrenia. Pantazopoulos, H; Boyer-Boiteau, A; Holbrook, EH; Jang, W; Hahn, CG; Arnold, SE; Berretta, S Schizophrenia research
150
366-72
2013
显示摘要
Emerging evidence points to proteoglycan abnormalities in the pathophysiology of schizophrenia (SZ). In particular, markedly abnormal expression of chondroitin sulfate proteoglycans (CSPGs), key components of the extracellular matrix, was observed in the medial temporal lobe. CSPG functions, including regulation of neuronal differentiation and migration, are highly relevant to the pathophysiology of SZ. CSPGs may exert similar functions in the olfactory epithelium (OE), a continuously regenerating neural tissue that shows cell and molecular abnormalities in SZ. We tested the hypothesis that CSPG expression in OE may be altered in SZ. CSPG-positive cells in postmortem OE from non-psychiatric control (n=9) and SZ (n=10) subjects were counted using computer-assisted light microscopy. 'Cytoplasmic' CSPG (c-CSPG) labeling was detected in sustentacular cells and some olfactory receptor neurons (c-CSPG+ORNs), while 'pericellular' CSPG (p-CSPG) labeling was found in basal cells and some ORNs (p-CSPG+ORNs). Dual labeling for CSPG and markers for mature and immature ORNs suggests that c-CSPG+ORNs correspond to mature ORNs, and p-CSPG+ORNs to immature ORNs. Previous studies in the same cohort demonstrated that densities of mature ORNs were unaltered (Arnold et al., 2001). In the present study, numerical densities of c-CSPG+ORNs were significantly decreased in SZ (pless than 0.025; 99.32% decrease), suggesting a reduction of CSPG expression in mature ORNs. Previous studies showed a striking increase in the ratios of immature neurons with respect to basal cells. In this study, we find that the ratio of p-CSPG+ORNs/CSPG+basal cells was significantly increased (p=0.03) in SZ, while numerical density changes of p-CSPG+ORNs (110.71% increase) or CSPG+basal cells (53.71% decrease), did not reach statistical significance. Together, these results indicate that CSPG abnormalities are present in the OE of SZ and specifically point to a reduction of CSPG expression in mature ORNs in SZ. Given the role CSPGs play in OE cell differentiation and axon guidance, we suggest that altered CSPG expression may contribute to ORN lineage dysregulation, and olfactory identification abnormalities, observed in SZ. | | | 24035561
|
DISC1 variants 37W and 607F disrupt its nuclear targeting and regulatory role in ATF4-mediated transcription. Malavasi, EL; Ogawa, F; Porteous, DJ; Millar, JK Human molecular genetics
21
2779-92
2012
显示摘要
Disrupted-In-Schizophrenia 1 (DISC1), a strong genetic candidate for psychiatric illness, encodes a multicompartmentalized molecular scaffold that regulates interacting proteins with key roles in neurodevelopment and plasticity. Missense DISC1 variants are associated with the risk of mental illness and with brain abnormalities in healthy carriers, but the underlying mechanisms are unclear. We examined the effect of rare and common DISC1 amino acid substitutions on subcellular targeting. We report that both the rare putatively causal variant 37W and the common variant 607F independently disrupt DISC1 nuclear targeting in a dominant-negative fashion, predicting that DISC1 nuclear expression is impaired in 37W and 607F carriers. In the nucleus, DISC1 interacts with the transcription factor Activating Transcription Factor 4 (ATF4), which is involved in the regulation of cellular stress responses, emotional behaviour and memory consolidation. At basal cAMP levels, wild-type DISC1 inhibits the transcriptional activity of ATF4, an effect that is weakened by both 37W and 607F independently, most likely as a consequence of their defective nuclear targeting. The common variant 607F additionally reduces DISC1/ATF4 interaction, which likely contributes to its weakened inhibitory effect. We also demonstrate that DISC1 modulates transcriptional responses to endoplasmic reticulum stress, and that this modulatory effect is ablated by 37W and 607F. By showing that DISC1 amino acid substitutions associated with psychiatric illness affect its regulatory function in ATF4-mediated transcription, our study highlights a potential mechanism by which these variants may impact on transcriptional events mediating cognition, emotional reactivity and stress responses, all processes of direct relevance to psychiatric illness. | | | 22422769
|
Differential effects of AdOx on gene expression in P19 embryonal carcinoma cells. Yan, L; Zhao, HY; Zhang, Y; Shen, YF BMC neuroscience
13
6
2012
显示摘要
Pluripotent cells maintain a unique gene expression pattern and specific chromatin signature. In this study, we explored the effect of the methyltransferase inhibitor adenosine dialdehyde (AdOx) on pluripotency maintenance and gene expression in P19 embryonal carcinoma cells.After AdOx treatment, the pluripotency-related gene network became disordered, and the early developmental genes were released from the repression. Remarkably, AdOx caused contrasting effects on the expression of two key pluripotency genes, nanog and oct3/4, with the reduction of the repressive histone marks H3K27me3, H3K9me3 and H3K9me2 only in the nanog gene.Key pluripotency genes were controlled by different mechanisms, including the differential enrichment of repressive histone methylation marks. These data provided novel clues regarding the critical role of histone methylation in the maintenance of pluripotency and the determination of cell fate in P19 pluripotent cells. | | | 22221422
|
The Na(+)/Ca(2+) exchanger NCKX4 governs termination and adaptation of the mammalian olfactory response. Stephan, AB; Tobochnik, S; Dibattista, M; Wall, CM; Reisert, J; Zhao, H Nature neuroscience
15
131-7
2012
显示摘要
Sensory perception requires accurate encoding of stimulus information by sensory receptor cells. We identified NCKX4, a potassium-dependent Na(+)/Ca(2+) exchanger, as being necessary for rapid response termination and proper adaptation of vertebrate olfactory sensory neurons (OSNs). Nckx4(-/-) (also known as Slc24a4) mouse OSNs displayed substantially prolonged responses and stronger adaptation. Single-cell electrophysiological analyses revealed that the majority of Na(+)-dependent Ca(2+) exchange in OSNs relevant to sensory transduction is a result of NCKX4 and that Nckx4(-/-) mouse OSNs are deficient in encoding action potentials on repeated stimulation. Olfactory-specific Nckx4(-/-) mice had lower body weights and a reduced ability to locate an odorous source. These results establish the role of NCKX4 in shaping olfactory responses and suggest that rapid response termination and proper adaptation of peripheral sensory receptor cells tune the sensory system for optimal perception. | | | 22057188
|
Phosphorylation of adenylyl cyclase III at serine1076 does not attenuate olfactory response in mice. Cygnar, KD; Collins, SE; Ferguson, CH; Bodkin-Clarke, C; Zhao, H The Journal of neuroscience : the official journal of the Society for Neuroscience
32
14557-62
2012
显示摘要
Feedback inhibition of adenylyl cyclase III (ACIII) via Ca(2+)-induced phosphorylation has long been hypothesized to contribute to response termination and adaptation of olfactory sensory neurons (OSNs). To directly determine the functional significance of this feedback mechanism for olfaction in vivo, we genetically mutated serine(1076) of ACIII, the only residue responsible for Ca(2+)-induced phosphorylation and inhibition of ACIII (Wei et al., 1996, 1998), to alanine in mice. Immunohistochemistry and Western blot analysis showed that the mutation affects neither the cilial localization nor the expression level of ACIII in OSNs. Electroolfactogram analysis showed no differences in the responses between wild-type and mutant mice to single-pulse odorant stimulations or in several stimulation paradigms for adaptation. These results suggest that phosphorylation of ACIII on serine(1076) plays a far less important role in olfactory response attenuation than previously thought. | | | 23077041
|