Synaptic elements for GABAergic feed-forward signaling between HII horizontal cells and blue cone bipolar cells are enriched beneath primate S-cones. Puller, C; Haverkamp, S; Neitz, M; Neitz, J PloS one
9
e88963
2014
显示摘要
The functional roles and synaptic features of horizontal cells in the mammalian retina are still controversial. Evidence exists for feedback signaling from horizontal cells to cones and feed-forward signaling from horizontal cells to bipolar cells, but the details of the latter remain elusive. Here, immunohistochemistry and confocal microscopy were used to analyze the expression patterns of the SNARE protein syntaxin-4, the GABA receptor subunits α1 and ρ, and the cation-chloride cotransporters NKCC and KCC2 in the outer plexiform layer of primate retina. In macaque retina, as observed previously in other species, syntaxin-4 was expressed on dendrites and axon terminals of horizontal cells at cone pedicles and rod spherules. At cones, syntaxin-4 appeared densely clustered in two bands, at horizontal cell dendritic tips and at the level of desmosome-like junctions. Interestingly, in the lower band where horizontal cells may synapse directly onto bipolar cells, syntaxin-4 was highly enriched beneath short-wavelength sensitive (S) cones and colocalized with calbindin, a marker for HII horizontal cells. The enrichment at S-cones was not observed in either mouse or ground squirrel. Furthermore, high amounts of both GABA receptor and cation-chloride cotransporter subunits were found beneath primate S-cones. Finally, while syntaxin-4 was expressed by both HI and HII horizontal cell types, the intense clustering and colocalization with calbindin at S-cones indicated an enhanced expression in HII cells. Taken together, GABA receptors beneath cone pedicles, chloride transporters, and syntaxin-4 are putative constituents of a synaptic set of proteins which would be required for a GABA-mediated feed-forward pathway via horizontal cells carrying signals directly from cones to bipolar cells. | | 24586460
|
GABA(A) receptors containing the α2 subunit are critical for direction-selective inhibition in the retina. Auferkorte, ON; Baden, T; Kaushalya, SK; Zabouri, N; Rudolph, U; Haverkamp, S; Euler, T PloS one
7
e35109
2012
显示摘要
Far from being a simple sensor, the retina actively participates in processing visual signals. One of the best understood aspects of this processing is the detection of motion direction. Direction-selective (DS) retinal circuits include several subtypes of ganglion cells (GCs) and inhibitory interneurons, such as starburst amacrine cells (SACs). Recent studies demonstrated a surprising complexity in the arrangement of synapses in the DS circuit, i.e. between SACs and DS ganglion cells. Thus, to fully understand retinal DS mechanisms, detailed knowledge of all synaptic elements involved, particularly the nature and localization of neurotransmitter receptors, is needed. Since inhibition from SACs onto DSGCs is crucial for generating retinal direction selectivity, we investigate here the nature of the GABA receptors mediating this interaction. We found that in the inner plexiform layer (IPL) of mouse and rabbit retina, GABA(A) receptor subunit α2 (GABA(A)R α2) aggregated in synaptic clusters along two bands overlapping the dendritic plexuses of both ON and OFF SACs. On distal dendrites of individually labeled SACs in rabbit, GABA(A)R α2 was aligned with the majority of varicosities, the cell's output structures, and found postsynaptically on DSGC dendrites, both in the ON and OFF portion of the IPL. In GABA(A)R α2 knock-out (KO) mice, light responses of retinal GCs recorded with two-photon calcium imaging revealed a significant impairment of DS responses compared to their wild-type littermates. We observed a dramatic drop in the proportion of cells exhibiting DS phenotype in both the ON and ON-OFF populations, which strongly supports our anatomical findings that α2-containing GABA(A)Rs are critical for mediating retinal DS inhibition. Our study reveals for the first time, to the best of our knowledge, the precise functional localization of a specific receptor subunit in the retinal DS circuit. | | 22506070
|
Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. M Rodrigues,Albino Martins,Isabel R Dias,Carlos A Viegas,Nuno M Neves,Manuela E Gomes,Rui L Reis Journal of tissue engineering and regenerative medicine
6
2012
显示摘要
Bone extracellular matrix (ECM) is composed of mineralized collagen fibrils which support biological apatite nucleation that participates in bone outstanding properties. Understanding and mimicking bone morphological and physiological parameters at a biological scale is a major challenge in tissue engineering scaffolding. Using emergent (nano)technologies scaffold designing may be critically improved, enabling highly functional tissue substitutes for bone applications. This study aims to develop novel biodegradable composite scaffolds of tricalcium phosphate (TCPs) and electrospun nanofibers of poly(ϵ-caprolactone) (PCL), combining TCPs osteoconductivity with PCL biocompatibility and elasticity, mimicking bone structure and composition. We hypothesized that scaffolds with such structure/composition would stimulate the proliferation and differentiation of bone marrow stromal cells (BMSCs) towards the osteogenic phenotype. Composite scaffolds, developed by electrospining using consecutive stacked layers of PCL and TCPs, were characterized by FTIR spectroscopy, X-Ray diffraction and scanning electronic microscopy. Cellular behavior was assessed in goat BMSCs seeded onto composite scaffolds and cultured in static or dynamic conditions, using basal or osteogenic media during 7, 14 or 21 days. Cellular proliferation was quantified and osteogenic differentiation confirmed by alkaline phosphatase activity, alizarin red staining and immunocytochemistry for osteocalcin and collagen I. Results suggest that PCL-TCP scaffolds provide a 3D support for gBMSCs proliferation and osteogenic differentiation with production of ECM. TCPs positively stimulate the osteogenic process, especially under dynamic conditions, where PCL-TCP scaffolds are sufficient to promote osteogenic differentiation even in basal medium conditions. The enhancement of the osteogenic potential in dynamic conditions evidences the synergistic effect of scaffold composition and dynamic stimulation in gBMSCs osteogenic differentiation. Copyright | | 22451140
|
Novel ?1 and ?2 GABAA receptor subunit mutations in families with idiopathic generalized epilepsy. Pamela Lachance-Touchette,Patricia Brown,Caroline Meloche,Peter Kinirons,Line Lapointe,Hélène Lacasse,Anne Lortie,Lionel Carmant,Fiona Bedford,Derek Bowie,Patrick Cossette The European journal of neuroscience
34
2011
显示摘要
Epilepsy is a heterogeneous neurological disease affecting approximately 50 million people worldwide. Genetic factors play an important role in both the onset and severity of the condition, with mutations in several ion-channel genes being implicated, including those encoding the GABA(A) receptor. Here, we evaluated the frequency of additional mutations in the GABA(A) receptor by direct sequencing of the complete open reading frame of the GABRA1 and GABRG2 genes from a cohort of French Canadian families with idiopathic generalized epilepsy (IGE). Using this approach, we have identified three novel mutations that were absent in over 400 control chromosomes. In GABRA1, two mutations were found, with the first being a 25-bp insertion that was associated with intron retention (i.e. K353delins18X) and the second corresponding to a single point mutation that replaced the aspartate 219 residue with an asparagine (i.e. D219N). Electrophysiological analysis revealed that K353delins18X and D219N altered GABA(A) receptor function by reducing the total surface expression of mature protein and/or by curtailing neurotransmitter effectiveness. Both defects would be expected to have a detrimental effect on inhibitory control of neuronal circuits. In contrast, the single point mutation identified in the GABRG2 gene, namely P83S, was indistinguishable from the wildtype subunit in terms of surface expression and functionality. This finding was all the more intriguing as the mutation exhibited a high degree of penetrance in three generations of one French Canadian family. Further experimentation will be required to understand how this mutation contributes to the occurrence of IGE in these individuals. | | 21714819
|
The spatial distribution of glutamatergic inputs to dendrites of retinal ganglion cells. Tatjana C Jakobs,Amane Koizumi,Richard H Masland The Journal of comparative neurology
510
2008
显示摘要
The spatial pattern of excitatory glutamatergic input was visualized in a large series of ganglion cells of the rabbit retina, by using particle-mediated gene transfer of an expression plasmid for postsynaptic density 95-green fluorescent protein (PSD95-GFP). PSD95-GFP was confirmed as a marker of excitatory input by co-localization with synaptic ribbons (RIBEYE and kinesin II) and glutamate receptor subunits. Despite wide variation in the size, morphology, and functional complexity of the cells, the distribution of excitatory synaptic inputs followed a single set of rules: 1) the linear density of synaptic inputs (PSD95 sites/linear mum) varied surprisingly little and showed little specialization within the arbor; 2) the total density of excitatory inputs across individual arbors peaked in a ring-shaped region surrounding the soma, which is in accord with high-resolution maps of receptive field sensitivity in the rabbit; and 3) the areal density scaled inversely with the total area of the dendritic arbor, so that narrow dendritic arbors receive more synapses per unit area than large ones. To achieve sensitivity comparable to that of large cells, those that report upon a small region of visual space may need to receive a denser synaptic input from within that space. 全文本文章 | | 18623177
|
Differential localization of GABAA receptor subunits within the substantia nigra of the human brain: an immunohistochemical study. H J Waldvogel,K Baer,W-P Gai,R T Gilbert,M I Rees,H Mohler,R L M Faull The Journal of comparative neurology
506
2008
显示摘要
Gamma-aminobutyric acid(A) (GABA(A)) receptors (GABA(A)R) are inhibitory heteropentameric chloride ion channels comprising a variety of subunits and are localized at postsynaptic sites within the central nervous system. In this study we present the first detailed immunohistochemical investigation on the regional, cellular, and subcellular localisation of alpha(1), alpha(2), alpha(3), beta(2,3), and gamma(2) subunits of the GABA(A)R in the human substantia nigra (SN). The SN comprises two major regions, the SN pars compacta (SNc) consisting of dopaminergic projection neurons, and the SN pars reticulata (SNr) consisting of GABAergic parvalbumin-positive projection neurons. The results of our single- and double-labeling studies demonstrate that in the SNr GABA(A) receptors contain alpha(1), alpha(3), beta(2,3), and gamma(2) subunits and are localized in a weblike network over the cell soma, dendrites, and spines of SNr parvalbumin-positive nonpigmented neurons. By contrast, GABA(A)Rs on the SNc dopaminergic pigmented neurons contain predominantly alpha(3) and gamma(2) subunits; however there is GABA(A)R heterogeneity in the SNc, with a small subpopulation (6.5%) of pigmented SNc neurons additionally containing alpha(1) and beta(2,3) GABA(A)R subunits. Also, in the SNr, parvalbumin-positive terminals are adjacent to GABA(A)R on the soma and proximal dendrites of SNr neurons, whereas linear arrangements of substance P-positive terminals are adjacent to GABA(A) receptors on all regions of the dendritic tree. These results show marked GABA(A)R subunit hetereogeneity in the SN, suggesting that GABA exerts quite different effects on pars compacta and pars reticulata neurons in the human SN via GABA(A) receptors of different subunit configurations. | | 18085588
|
Cell type-specific effect of hypoxia and platelet-derived growth factor-BB on extracellular matrix turnover and its consequences for lung remodeling. Karakiulakis, G; Papakonstantinou, E; Aletras, AJ; Tamm, M; Roth, M The Journal of biological chemistry
282
908-15
2007
显示摘要
Hypoxia is associated with extracellular matrix remodeling in several inflammatory lung diseases, such as fibrosis, chronic obstructive pulmonary disease, and asthma. In a human cell culture model, we assessed whether extracellular matrix modification by hypoxia and platelet-derived growth factor (PDGF) involves the action of matrix metalloproteinases (MMPs) and thereby affects cell proliferation. Expression of MMP and its activity were assessed by zymography and enzyme-linked immunosorbent assay in human lung fibroblasts and pulmonary vascular smooth muscle cells (VSMCs), and synthesis of soluble collagen type I was assessed by enzyme-linked immunosorbent assay. In both cell types, hypoxia up-regulated the expression of MMP-1, -2, and -9 precursors without subsequent activation. MMP-13 was increased by hypoxia only in fibroblasts. PDGF-BB inhibited the synthesis and secretion of all hypoxia-dependent MMP via Erk1/2 mitogen-activated protein (MAP) kinase activation. Hypoxia and PDGF-BB induced synthesis of soluble collagen type I via Erk1/2 and p38 MAP kinase. Hypoxia-induced cell proliferation was blocked by antibodies to PDGF-BB or by inhibition of Erk1/2 but not by the inhibition of MMP or p38 MAP kinase in fibroblasts. In VSMCs, hypoxia-induced proliferation involved Erk1/2 and p38 MAP kinases and was further increased by fibroblast-conditioned medium or soluble collagen type I via Erk1/2. In conclusion, hypoxia controls tissue remodeling and proliferation in a cell type-specific manner. Furthermore, fibroblasts may affect proliferation of VSMC indirectly by inducing the synthesis of soluble collagen type I. | | 17099219
|
Biochemical analysis of GABA receptor subunits alpha 1, alpha 5, beta1 beta2 in the hippocampus of patients with Alzheimer's disease neurophathology Rissman, R.A., Mishizen-Eberz A.J. N.,Wolfe, C.B.B., DeBlas A.L., Miralles C.P., Ikonomovic M.D., armstrong D.M. Neuroscience 120 (2003) 295-705
2003
| Western Blotting | |
Regulation of A-kinase anchoring protein 79/150-cAMP-dependent protein kinase postsynaptic targeting by NMDA receptor activation of calcineurin and remodeling of dendritic actin Gomez, Lisa L, et al J Neurosci, 22:7027-44 (2002)
2002
| | 12177200
|