Exploring the contextual sensitivity of factors that determine cell-to-cell variability in receptor-mediated apoptosis. Gaudet, S; Spencer, SL; Chen, WW; Sorger, PK PLoS computational biology
8
e1002482
2012
显示摘要
Stochastic fluctuations in gene expression give rise to cell-to-cell variability in protein levels which can potentially cause variability in cellular phenotype. For TRAIL (TNF-related apoptosis-inducing ligand) variability manifests itself as dramatic differences in the time between ligand exposure and the sudden activation of the effector caspases that kill cells. However, the contribution of individual proteins to phenotypic variability has not been explored in detail. In this paper we use feature-based sensitivity analysis as a means to estimate the impact of variation in key apoptosis regulators on variability in the dynamics of cell death. We use Monte Carlo sampling from measured protein concentration distributions in combination with a previously validated ordinary differential equation model of apoptosis to simulate the dynamics of receptor-mediated apoptosis. We find that variation in the concentrations of some proteins matters much more than variation in others and that precisely which proteins matter depends both on the concentrations of other proteins and on whether correlations in protein levels are taken into account. A prediction from simulation that we confirm experimentally is that variability in fate is sensitive to even small increases in the levels of Bcl-2. We also show that sensitivity to Bcl-2 levels is itself sensitive to the levels of interacting proteins. The contextual dependency is implicit in the mathematical formulation of sensitivity, but our data show that it is also important for biologically relevant parameter values. Our work provides a conceptual and practical means to study and understand the impact of cell-to-cell variability in protein expression levels on cell fate using deterministic models and sampling from parameter distributions. | 22570596
|
Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Sabrina L Spencer,Suzanne Gaudet,John G Albeck,John M Burke,Peter K Sorger Nature
459
2009
显示摘要
In microorganisms, noise in gene expression gives rise to cell-to-cell variability in protein concentrations. In mammalian cells, protein levels also vary and individual cells differ widely in their responsiveness to uniform physiological stimuli. In the case of apoptosis mediated by TRAIL (tumour necrosis factor (TNF)-related apoptosis-inducing ligand) it is common for some cells in a clonal population to die while others survive-a striking divergence in cell fate. Among cells that die, the time between TRAIL exposure and caspase activation is highly variable. Here we image sister cells expressing reporters of caspase activation and mitochondrial outer membrane permeabilization after exposure to TRAIL. We show that naturally occurring differences in the levels or states of proteins regulating receptor-mediated apoptosis are the primary causes of cell-to-cell variability in the timing and probability of death in human cell lines. Protein state is transmitted from mother to daughter, giving rise to transient heritability in fate, but protein synthesis promotes rapid divergence so that sister cells soon become no more similar to each other than pairs of cells chosen at random. Our results have implications for understanding 'fractional killing' of tumour cells after exposure to chemotherapy, and for variability in mammalian signal transduction in general. 全文本文章 | 19363473
|
Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Yamaguchi, R; Lartigue, L; Perkins, G; Scott, RT; Dixit, A; Kushnareva, Y; Kuwana, T; Ellisman, MH; Newmeyer, DD Molecular cell
31
557-69
2008
显示摘要
Controversy surrounds the role and mechanism of mitochondrial cristae remodeling in apoptosis. Here we show that the proapoptotic BH3-only proteins Bid and Bim induced full cytochrome c release but only a subtle alteration of crista junctions, which involved the disassembly of Opa1 complexes. Both mitochondrial outer membrane permeabilization (MOMP) and crista junction opening (CJO) were caspase independent and required a functional BH3 domain and Bax/Bak. However, MOMP and CJO were experimentally separable. Pharmacological blockade of MOMP did not prevent Opa1 disassembly and CJO; moreover, expression of a disassembly-resistant mutant Opa1 (Q297V) blocked cytochrome c release and apoptosis but not Bax activation. Thus, apoptosis requires a subtle form of Opa1-dependent crista remodeling that is induced by BH3-only proteins and Bax/Bak but independent of MOMP. | 18691924
|