Temsirolimus activates autophagy and ameliorates cardiomyopathy caused by lamin A/C gene mutation. Choi, JC; Muchir, A; Wu, W; Iwata, S; Homma, S; Morrow, JP; Worman, HJ Science translational medicine
4
144ra102
2012
显示摘要
Mutations in the lamin A/C gene (LMNA), which encodes A-type lamins, cause a diverse range of diseases collectively called laminopathies, the most common of which is dilated cardiomyopathy. Emerging evidence suggests that LMNA mutations cause disease by altering cell signaling pathways, but the specific mechanisms are poorly understood. We show that the AKT-mammalian target of rapamycin pathway is hyperactivated in hearts of mice with cardiomyopathy caused by Lmna mutation and that in vivo administration of the rapamycin analog temsirolimus prevents deterioration of cardiac function. We also show defective autophagy in hearts of these mice and demonstrate that improvement in heart function induced by pharmacological interventions is correlated with enhanced autophagy. These findings provide a rationale for treatment of LMNA cardiomyopathy with rapalogs and implicate defective autophagy as a pathogenic mechanism of cardiomyopathy arising from LMNA mutation. | 22837537
|
SILAM for quantitative proteomics of liver Akt1/PKBα after burn injury. Lu, XM; Tompkins, RG; Fischman, AJ International journal of molecular medicine
29
461-71
2012
显示摘要
Akt1/protein kinase Bα (Akt1/PKBα) is a downstream mediator of the insulin signaling system. In this study we explored mechanism(s) for its role in burn injury. Akt1/PKBα in liver extracts from mice with burn injury fed with (2H7)-L-Leu was immunoprecipitated and isolated with SDS-PAGE. Two tryptic peptides, one in the kinase loop and a control peptide just outside of the loop were sequenced via nano-LC interfaced with quadruple time-of-flight tandem mass spectrometry (Q-TOF tandem MS). Their relative isotopologue abundances were determined by stable isotope labeling by amino acids in mammalians (SILAM). Relative quantifications based on paired heavy/light peptides were obtained in 3 steps. The first step included homogenization of mixtures of equal amounts of tissue from burned and sham-treated animals (i.e., isotope dilution) and acquisition of uncorrected data based on parent monoisotopic MS ion ratios. The second step included determination of isotopic enrichment of the kinase from burned mice on Day 7 and the third step enrichment correction of partially labeled heavy and light monoisotopic MS ion ratios for relative quantification of bioactivity (loop peptide) and expression level (control peptide). Protein synthesis and enrichment after injury were found to be dependent on tissue and turnover of individual proteins. Three heavy and light monoisotopic ion ratios for albumin peptides from burned mice indicated ~55% enrichment and ~16.7-fold downregulation. In contract, serum amyloid P had ~66% enrichment and was significantly upregulated. Akt1/PKBα had ~56% enrichment and kinase level in response to the burn injury was upregulated compared with the control peptide. However, kinase bioactivity, represented by the Cys296 peptide, was significantly reduced. Overall, we demonstrated that i) quantitative proteomics can be performed without completely labeled mice; ii) measurement of enrichment of acyl-tRNAs is unnecessary and iii) Cys296 plays an important role in kinase activity after burn injury. | 22179310
|
UPR-mediated TRIB3 expression correlates with reduced AKT phosphorylation and inability of interleukin 6 to overcome palmitate-induced apoptosis in RINm5F cells. Nicoletti-Carvalho, JE; Nogueira, TC; Gorjão, R; Bromati, CR; Yamanaka, TS; Boschero, AC; Velloso, LA; Curi, R; Anhê, GF; Bordin, S The Journal of endocrinology
206
183-93
2010
显示摘要
Unfolded protein response (UPR)-mediated pancreatic beta-cell death has been described as a common mechanism by which palmitate (PA) and pro-inflammatory cytokines contribute to the development of diabetes. There are evidences that interleukin 6 (IL6) has a protective action against beta-cell death induced by pro-inflammatory cytokines; the effects of IL6 on PA-induced apoptosis have not been investigated yet. In the present study, we have demonstrated that PA selectively disrupts IL6-induced RAC-alpha serine/threonine-protein kinase (AKT) activation without interfering with signal transducer and activator of transcription 3 phosphorylation in RINm5F cells. The inability of IL6 to activate AKT in the presence of PA correlated with an inefficient protection against PA-induced apoptosis. In contrast to PA, IL6 efficiently reduced apoptosis induced by pro-inflammatory cytokines. In addition, we have demonstrated that IL6 is unable to overcome PA-stimulated UPR, as assessed by activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) expression, X-box binding protein-1 gene mRNA splicing, and pancreatic eukaryotic initiation factor-2 alpha kinase phosphorylation, whereas no significant induction of UPR by pro-inflammatory cytokines was detected. This unconditional stimulation of UPR and apoptosis by PA was accompanied by the stimulation of CHOP and tribble3 (TRIB3) expression, irrespective of the presence of IL6. These findings suggest that IL6 is unable to protect pancreatic beta-cells from PA-induced apoptosis because it does not repress UPR activation. In this way, CHOP and ATF4 might mediate PA-induced TRIB3 expression and, by extension, the suppression of IL6 activation of pro-survival kinase AKT. | 20488947
|
Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. James, SR; Downes, CP; Gigg, R; Grove, SJ; Holmes, AB; Alessi, DR The Biochemical journal
315 ( Pt 3)
709-13
1996
显示摘要
Recent evidence has suggested that activation of phosphoinositide 3-kinase (PI 3-kinase) is required for the activation of Akt-1 by growth factors and insulin. Here we demonstrate by two independent methods that Akt-1 from L6 myotubes binds to PtdIns(3,4,5)P3, PtdIns(3,4)P2 and PtdIns(4,5)P2 when presented against a background of phosphatidylserine (PtdSer) or a 1:1 mixture of PtdSer and phosphatidylcholine (PtdCho). No binding was observed with the lipids PtdIns(3,5)P2, PtdIns4P and PtdIns3P or background lipids. Activated, hyperphosphorylated forms of Akt-1 from insulin-stimulated L6 myotubes bound to PtdIns(3,4,5)P3 in a similar manner as inactive Akt-1. Quantitative analysis using surface plasmon resonance showed that the equilibrium association constant for the binding of Akt-1 to PtdIns(3,4,5)P3 was submicromolar and that PtdIns(3,4)P2 and PtdIns(4,5)P2 bound to Akt-1 with 3- and 6-fold lower affinities respectively. Interaction of Akt-1 with PtdIns(3,4,5)P3 did not activate the protein kinase activity, either before or after incubation with MgATP. A model is presented in which PtdIns(3,4,5)P3 may prime Akt-1 for activation by another protein kinase, perhaps by recruiting it to the plasma membrane. | 8645147
|