TG-interacting factor 1 acts as a transcriptional repressor of sterol O-acyltransferase 2. Pramfalk, C; Melhuish, TA; Wotton, D; Jiang, ZY; Eriksson, M; Parini, P Journal of lipid research
55
709-17
2014
显示摘要
Acat2 [gene name: sterol O-acyltransferase 2 (SOAT2)] esterifies cholesterol in enterocytes and hepatocytes. This study aims to identify repressor elements in the human SOAT2 promoter and evaluate their in vivo relevance. We identified TG-interacting factor 1 (Tgif1) to function as an important repressor of SOAT2. Tgif1 could also block the induction of the SOAT2 promoter activity by hepatocyte nuclear factor 1α and 4α. Women have ∼ 30% higher hepatic TGIF1 mRNA compared with men. Depletion of Tgif1 in mice increased the hepatic Soat2 expression and resulted in higher hepatic lipid accumulation and plasma cholesterol levels. Tgif1 is a new player in human cholesterol metabolism. | 24478032
|
Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells. Yap, CS; Sinha, RA; Ota, S; Katsuki, M; Yen, PM Biochemical and biophysical research communications
440
635-9
2013
显示摘要
Thyroid hormones (THs) regulate transcription of many metabolic genes in the liver through its nuclear receptors (TRs). Although the molecular mechanisms for positive regulation of hepatic genes by TH are well understood, much less is known about TH-mediated negative regulation. Recently, several nuclear hormone receptors were shown to downregulate gene expression via miRNAs. To further examine the potential role of miRNAs in TH-mediated negative regulation, we used a miRNA microarray to identify miRNAs that were directly regulated by TH in a human hepatic cell line. In our screen, we discovered that miRNA-181d is a novel hepatic miRNA that was regulated by TH in hepatic cell culture and in vivo. Furthermore, we identified and characterized two novel TH-regulated target genes that were downstream of miR-181d signaling: caudal type homeobox 2 (CDX2) and sterol O-acyltransferase 2 (SOAT2 or ACAT2). CDX2, a known positive regulator of hepatocyte differentiation, was regulated by miR-181d and directly activated SOAT2 gene expression. Since SOAT2 is an enzyme that generates cholesteryl esters that are packaged into lipoproteins, our results suggest miR-181d plays a significant role in the negative regulation of key metabolic genes by TH in the liver. | 24103759
|
Tissue-specific knockouts of ACAT2 reveal that intestinal depletion is sufficient to prevent diet-induced cholesterol accumulation in the liver and blood. Zhang, Jun, et al. J. Lipid Res., 53: 1144-52 (2012)
2012
显示摘要
Acyl-CoA:cholesterol acyltransferase 2 (ACAT2) generates cholesterol esters (CE) for packaging into newly synthesized lipoproteins and thus is a major determinant of blood cholesterol levels. ACAT2 is expressed exclusively in the small intestine and liver, but the relative contributions of ACAT2 expression in these tissues to systemic cholesterol metabolism is unknown. We investigated whether CE derived from the intestine or liver would differentially affect hepatic and plasma cholesterol homeostasis. We generated liver-specific (ACAT2(L-/L-)) and intestine-specific (ACAT2(SI-/SI-)) ACAT2 knockout mice and studied dietary cholesterol-induced hepatic lipid accumulation and hypercholesterolemia. ACAT2(SI-/SI-) mice, in contrast to ACAT2(L-/L-) mice, had blunted cholesterol absorption. However, specific deletion of ACAT2 in the intestine generated essentially a phenocopy of the conditional knockout of ACAT2 in the liver, with reduced levels of plasma very low-density lipoprotein and hepatic CE, yet hepatic-free cholesterol does not build up after high cholesterol intake. ACAT2(L-/L-) and ACAT2(SI-/SI-) mice were equally protected from diet-induced hepatic CE accumulation and hypercholesterolemia. These results suggest that inhibition of intestinal or hepatic ACAT2 improves atherogenic hyperlipidemia and limits hepatic CE accumulation in mice and that depletion of intestinal ACAT2 is sufficient for most of the beneficial effects on cholesterol metabolism. Inhibitors of ACAT2 targeting either tissue likely would be beneficial for atheroprotection. | 22460046
|
ACAT2 and human hepatic cholesterol metabolism: identification of important gender-related differences in normolipidemic, non-obese Chinese patients. Parini, Paolo, et al. Atherosclerosis, 207: 266-71 (2009)
2009
显示摘要
ACAT2 is a major cholesterol esterification enzyme specifically expressed in hepatocytes and may control the amount of hepatic free (unesterified) cholesterol available for secretion into bile or into HDL. This study aims to further elucidate physiologic roles of ACAT2 in human hepatic cholesterol metabolism. | 19467657
|
Identification of putative active site residues of ACAT enzymes. Das, Akash, et al. J. Lipid Res., 49: 1770-81 (2008)
2008
显示摘要
In this report, we sought to determine the putative active site residues of ACAT enzymes. For experimental purposes, a particular region of the C-terminal end of the ACAT protein was selected as the putative active site domain due to its high degree of sequence conservation from yeast to humans. Because ACAT enzymes have an intrinsic thioesterase activity, we hypothesized that by analogy with the thioesterase domain of fatty acid synthase, the active site of ACAT enzymes may comprise a catalytic triad of ser-his-asp (S-H-D) amino acid residues. Mutagenesis studies revealed that in ACAT1, S456, H460, and D400 were essential for activity. In ACAT2, H438 was required for enzymatic activity. However, mutation of D378 destabilized the enzyme. Surprisingly, we were unable to identify any S mutations of ACAT2 that abolished catalytic activity. Moreover, ACAT2 was insensitive to serine-modifying reagents, whereas ACAT1 was not. Further studies indicated that tyrosine residues may be important for ACAT activity. Mutational analysis showed that the tyrosine residue of the highly conserved FYXDWWN motif was important for ACAT activity. Furthermore, Y518 was necessary for ACAT1 activity, whereas the analogous residue in ACAT2, Y496, was not. The available data suggest that the amino acid requirement for ACAT activity may be different for the two ACAT isozymes. | 18480028
|
Identification of the interaction site within acyl-CoA:cholesterol acyltransferase 2 for the isoform-specific inhibitor pyripyropene A. Das, Akash, et al. J. Biol. Chem., 283: 10453-60 (2008)
2008
显示摘要
Targeted deletion of acyl-CoA:cholesterol acyltransferase 2 (ACAT2) (A2), especially in the liver, protects hyperlipidemic mice from diet-induced hypercholesterolemia and atherosclerosis, whereas the deletion of ACAT1 (A1) is not as effective, suggesting ACAT2 may be the more appropriate target for treatment of atherosclerosis. Among the numerous ACAT inhibitors known, pyripyropene A (PPPA) is the only compound that has high selectivity (>2000-fold) for inhibition of ACAT2 compared with ACAT1. In the present study we sought to determine the PPPA interaction site of ACAT2. To achieve this goal we made several chimeric proteins where parts of ACAT2 were replaced by the analogous region of ACAT1. Differences in the amino acid sequence and the membrane topology were utilized to design the chimeras. Among chimeras, A2:1-428/A1:444-550 had 50% reduced PPPA selectivity, whereas C-terminal-truncated ACAT2 mutant A2:1-504 (C-terminal last 22 amino acids were deleted) remained selectively inhibited, indicating the PPPA-sensitive site is located within a region between amino acids 440 and 504. Three additional chimeras within this region helped narrow down the PPPA-sensitive site to a region containing amino acids 480-504, representing the fifth putative transmembrane domain of ACAT2. Subsequently, for this region we made single amino acid mutants where each amino acid in ACAT2 was individually changed to its ACAT1 counterpart. Mutation of Q492L, V493L, S494A resulted in only 30, 50, and 70% inhibition of the activity by PPPA, respectively (as opposed to greater than 95% with the wild type enzyme), suggesting these three residues are responsible for the selective inhibition by PPPA of ACAT2. Additionally, we found that PPPA non-covalently interacts with ACAT2 apparently without altering the oligomeric structure of the protein. The present study provides the first evidence for a unique motif in ACAT2 that can be utilized for making an ACAT2-specific drug. | 18285335
|
ACAT2 is localized to hepatocytes and is the major cholesterol-esterifying enzyme in human liver. Parini, Paolo, et al. Circulation, 110: 2017-23 (2004)
2004
显示摘要
Two acyl-coenzyme A:cholesterol acyltransferase (ACAT) genes, ACAT1 and ACAT2, have been identified that encode 2 proteins responsible for intracellular cholesterol esterification. | 15451793
|
Differential expression of ACAT1 and ACAT2 among cells within liver, intestine, kidney, and adrenal of nonhuman primates. Lee, R G, et al. J. Lipid Res., 41: 1991-2001 (2000)
2000
显示摘要
Two closely related enzymes with more than 50% sequence identity have been identified that catalyze the esterification of cholesterol using acyl-CoA substrates, namely acyl-CoA:cholesterol acyltransferase 1 (ACAT1) and ACAT2. Both are membrane-spanning proteins believed to reside in the endoplasmic reticulum of cells. ACAT2 has been hypothesized to be associated with lipoprotein particle secretion whereas ACAT1 is ubiquitous and may serve a more general role in cellular cholesterol homeostasis. We have prepared and affinity purified rabbit polyclonal antibodies unique to either ACAT enzyme to identify their cellular localization in liver and intestine, the two main lipoprotein-secreting tissues of the body, and for comparison, kidney and adrenal. In the liver, ACAT2 was identified in the rough endoplasmic reticulum of essentially all hepatocytes whereas ACAT1 was confined to cells lining the intercellular spaces among hepatocytes in a pattern typical of Kupffer cells. In the intestine, ACAT2 signal was strongly present in the apical third of the mucosal cells, whereas ACAT1 staining was diffuse throughout the mucosal cell, but with strong signal in goblet cells, Paneth cells, and villus macrophages. In the kidney, ACAT1 immunostaining was specific for the distal tubules and podocytes within the glomerulus. In the adrenal, ACAT1 signal was strongly present in the cells of the cortex, and absent from other adrenal cell types. No ACAT2 signal was identified in the kidney or adrenal. We conclude that only the cells of the liver and intestine that secrete apolipoprotein B-containing lipoproteins contain ACAT2, whereas ACAT1 is present in numerous other cell types. The data clearly suggest separate functions for these two closely related enzymes, with ACAT2 being most closely associated with plasma cholesterol levels. | 11108732
|