Millipore Sigma Vibrant Logo
 

nitric+oxide+synthase


575 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (457)
  • (106)
  • (4)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Active stabilization of human endothelial nitric oxide synthase mRNA by hnRNP E1 protects against antisense RNA and microRNAs. 23478261

    Human endothelial nitric oxide synthase (eNOS) mRNA is highly stable in endothelial cells (ECs). Posttranscriptional regulation of eNOS mRNA stability is an important component of eNOS regulation, especially under hypoxic conditions. Here, we show that the human eNOS 3' untranslated region (3' UTR) contains multiple, evolutionarily conserved pyrimidine (C and CU)-rich sequence elements that are both necessary and sufficient for mRNA stabilization. Importantly, RNA immunoprecipitations and RNA electrophoretic mobility shift assays (EMSAs) revealed the formation of heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1)-containing RNP complexes at these 3'-UTR elements. Knockdown of hnRNP E1 decreased eNOS mRNA half-life, mRNA levels, and protein expression. Significantly, these stabilizing RNP complexes protect eNOS mRNA from the inhibitory effects of its antisense transcript sONE and 3'-UTR-targeting small interfering RNAs (siRNAs), as well as microRNAs, specifically, hsa-miR-765, which targets eNOS mRNA stability determinants. Hypoxia disrupts hnRNP E1/eNOS 3'-UTR interactions via increased Akt-mediated serine phosphorylation (including serine 43) and increased nuclear localization of hnRNP E1. These mechanisms account, at least in part, for the decrease in eNOS mRNA stability under hypoxic conditions. Thus, the stabilization of human eNOS mRNA by hnRNP E1-containing RNP complexes serves as a key protective mechanism against the posttranscriptional inhibitory effects of antisense RNA and microRNAs under basal conditions but is disrupted under hypoxic conditions.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-700
    Nombre del producto:
    Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit
  • Deficits in spatial learning and memory is associated with hippocampal volume loss in aged apolipoprotein E4 mice. 21743131

    Apolipoprotein E ε4 (ApoE4) has been implicated as a potential genetic risk factor for dementia. In this study, we investigate the effect of ApoE4 on learning and memory, changes in brain volume and neuroinflammatory responses in brain of ApoE4 transgenic mice. Four groups of male mice with ApoE4 and age-matched wild type (WT) (6-, 12-, 18- and 24-month) were studied. Spatial learning and retaining of mice was examined in the Morris Water Maze (MWM). Changes in brain volume (including the whole brain, hippocampus, cortex, total ventricles, and caudate putamen) were assessed by using 7T small animal MRI. Neuroinflammatory responses were analyzed by measuring the levels of microglia (Iba-1), iNOS, TNFα, and IL-6 quantitatively. In the MWM, ApoE4 mice showed longer escape latency (p < 0.05) and swim distance (p < 0.05) at age 12 month and older, comparing with the WT mice. They also demonstrated poor memory retention in the probe test (p < 0.05). Brain atrophy was significant in ApoE4 mice than age-matched WT mice (18 months: 0.079 ± 0.004 versus 0.086 ± 0.003, p = 0.018; and 24 months: 0.074 ± 0.005 versus 0.084 ± 0.006, p = 0.008). The expression of Iba-1, iNOS, and TNFα in hippocampus and cortex were significantly higher in ApoE4 mice than in WT mice at 12 months and older. These data suggest that ApoE4 plays an important role in learning and memory impairment. These deficits are associated with neuroinflammatory responses that may in turn lead to atrophy in hippocampus and cortex.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-573
    Nombre del producto:
    Anti-iNOS/NOS II Antibody, NT
  • Evidence to suggest nitric oxide is an interstitial regulator of Leydig cell steroidogenesis. 7869921

    Recent studies have suggested that nitric oxide (NO) may function as both an intracellular and intercellular signal that affects neural and immunological activity, vascular tone, platelet adhesion, and production of some hormones. Arginine analogs such as NG-monomethyl-L-arginine (L-NMMA) and N omega-nitro-L-arginine methyl ester (L-NAME) act to inhibit the intracellular formation of NO and have been used to study the effects of decreased NO formation on physiological systems. A single in vivo study has suggested that a similar analog, NG-nitro-L-arginine, increases serum testosterone (T), but the organ site and mechanism of action were not investigated. The present study was performed to investigate the effects of NO synthase inhibitors on Leydig cell function. L-NMMA and L-NAME, but not the inactive enantiomer (D-NMMA), increased both basal and human chorionic gonadotropin (hCG)-stimulated T production while decreasing guanosine 3':5'-cyclic monophosphate (cGMP). There was no effect on either adenosine 3':5'-cyclic monophosphate (cAMP) accumulation or specific hCG binding. These results suggest that NO formation, which is inhibited by L-NMMA and L-NAME, is important in the regulation of Leydig cell T production by interstitial cells of the testis, and that changes in cGMP levels might be involved in this process.
    Tipo de documento:
    Referencia
    Referencia del producto:
    16-237
    Nombre del producto:
    Normal Rabbit IgG, Alexa Fluor® 488 conjugate
  • Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65. 25389371

    Inflammation increases the abundance of inducible nitric oxide synthase (iNOS), leading to enhanced production of nitric oxide (NO), which can modify proteins by S-nitrosylation. Enhanced NO production increases the activities of the transcription factors p53 and nuclear factor κB (NF-κB) in several models of disease-associated inflammation. S-nitrosylation inhibits the activity of the protein deacetylase SIRT1. SIRT1 limits apoptosis and inflammation by deacetylating p53 and p65 (also known as RelA), a subunit of NF-κB. We showed in multiple cultured mammalian cell lines that NO donors or inflammatory stimuli induced S-nitrosylation of SIRT1 within CXXC motifs, which inhibited SIRT1 by disrupting its ability to bind zinc. Inhibition of SIRT1 reduced deacetylation and promoted activation of p53 and p65, leading to apoptosis and increased expression of proinflammatory genes. In rodent models of systemic inflammation, Parkinson's disease, or aging-related muscular atrophy, S-nitrosylation of SIRT1 correlated with increased acetylation of p53 and p65 and activation of p53 and NF-κB target genes, suggesting that S-nitrosylation of SIRT1 may represent a proinflammatory switch common to many diseases and aging.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Cell-specific effects of nitric oxide deficiency on parathyroid hormone-related peptide (PTHrP) responsiveness and PTH1 receptor expression in cardiovascular cells. 19342458

    The missing influence of estrogen on endothelial nitric oxide (NO) synthase often forms the basis for a worsening of the cardiac risk profile for women in postmenopause. Various studies have shown that decreasing estrogen levels also directly effect the expression of PTHrP and TGFbeta1. PTHrP is involved in the endothelium-dependent regulation of coronary resistance and cardiac function. The current study investigates to what extent chronic NO deficit affects the cardiac effects of PTHrP. NO deficit was achieved in female adult rats by feeding them the NO synthase inhibitor N-omega-nitro-L-arginine methyl ester over a period of 4 wk. Isolated hearts of the conditioned animals were investigated in Langendorff technique and perfused for 3 min with 100 nM PTHrP. The contraction behavior of isolated cardiomyocytes was registered in a cell-edge detection system. Hearts from untreated animals displayed a significant drop in left ventricular developed pressure and a pronounced increase in heart rate in consequence of short term PTHrP stimulation. In hearts from NO-deficient rats PTHrP no longer affected the inotropy and chronotropy. The vasodilating effect of PTHrP on coronary vessels was, however, independent of the NO level. These changes were accompanied by a differing expression of the PTH1 receptor. TGFbeta1 was identified as an important mediator for the regulation of the PTH1 receptor in myocytic but not endothelial cells. These results indicate that chronic NO deficit down-regulates the PTH1 receptor in a TGFbeta1-dependent way. These findings are important with respect to the relatively new therapy of postmenopausal osteoporosis with PTHrP analogs.,
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-517
    Nombre del producto:
    Anti-PTH/PTHrP Receptor Antibody, clone 3D1.1
  • The nitric oxide-cyclic GMP pathway regulates FoxO and alters dopaminergic neuron survival in Drosophila. 22393355

    Activation of the forkhead box transcription factor FoxO is suggested to be involved in dopaminergic (DA) neurodegeneration in a Drosophila model of Parkinson's disease (PD), in which a PD gene product LRRK2 activates FoxO through phosphorylation. In the current study that combines Drosophila genetics and biochemical analysis, we show that cyclic guanosine monophosphate (cGMP)-dependent kinase II (cGKII) also phosphorylates FoxO at the same residue as LRRK2, and Drosophila orthologues of cGKII and LRRK2, DG2/For and dLRRK, respectively, enhance the neurotoxic activity of FoxO in an additive manner. Biochemical assays using mammalian cGKII and FoxO1 reveal that cGKII enhances the transcriptional activity of FoxO1 through phosphorylation of the FoxO1 S319 site in the same manner as LRRK2. A Drosophila FoxO mutant resistant to phosphorylation by DG2 and dLRRK (dFoxO S259A corresponding to human FoxO1 S319A) suppressed the neurotoxicity and improved motor dysfunction caused by co-expression of FoxO and DG2. Nitric oxide synthase (NOS) and soluble guanylyl cyclase (sGC) also increased FoxO's activity, whereas the administration of a NOS inhibitor L-NAME suppressed the loss of DA neurons in aged flies co-expressing FoxO and DG2. These results strongly suggest that the NO-FoxO axis contributes to DA neurodegeneration in LRRK2-linked PD.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1501
    Nombre del producto:
    Anti-Actin Antibody, clone C4
  • Nitrative stress in cerebral endothelium is mediated by mGluR5 in hyperhomocysteinemia. 22186670

    Hyperhomocysteinemia (HHcy) disrupts nitric oxide (NO) signaling and increases nitrative stress in cerebral microvascular endothelial cells (CMVECs). This is mediated, in part, by protein nitrotyrosinylation (3-nitrotyrosine; 3-NT) though the mechanisms by which extracellular homocysteine (Hcy) generates intracellular 3-NT are unknown. Using a murine model of mild HHcy (cbs(+/-) mouse), we show that 3-NT is significantly elevated in cerebral microvessels with concomitant reductions in serum NO bioavailability as compared with wild-type littermate controls (cbs(+/+)). Directed pharmacology identified a receptor-dependent mechanism for 3-NT formation in CMVECs. Homocysteine increased expression of inducible NO synthase (iNOS) and formation of 3-NT, both of which were blocked by inhibition of metabotropic glutamate receptor-5 (mGluR5) with the specific antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride. Activation of mGluR5 is both sufficient and necessary to drive the nitrative stress because direct activation using the mGluR5-specific agonist (RS)-2-chloro-5-hydroxyphenylglycine also increased iNOS expression and 3-NT formation while knockdown of mGluR5 receptor expression by short hairpin RNA (shRNA) blocked their increase in response to Hcy. Nitric oxide derived from iNOS was required for Hcy-mediated formation of 3-NT because the effect was blocked by 1400W. These results provide the first evidence for a receptor-dependent process that explains how plasma Hcy levels control intracellular nitrative stress in cerebral microvascular endothelium.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5411
    Nombre del producto:
    Anti-Nitrotyrosine Antibody
  • Blockade of the MEK/ERK pathway with a raf inhibitor prevents activation of pro-inflammatory mediators in cerebral arteries and reduction in cerebral blood flow after sub ... 20424636

    Cerebral ischemia that develops after subarachnoid hemorrhage (SAH) carries high morbidity and mortality. Inflammatory mediators are involved in the development of cerebral ischemia through activation of the mitogen-activated protein kinase pathway. We hypothesized that blockade of the MAPkinase/ERK (MEK)/extracellular signal-regulated kinase (ERK) pathway upstream with a specific raf inhibitor would prevent SAH-induced activation of the cerebrovascular inflammatory response. The raf inhibitor SB-386023-b was injected intracisternally in our rat model at 0, 6, or 12 hours after the SAH. After 48 hours, cerebral arteries were harvested, and iNOS, interleukin (IL)-6, IL-1β, matrix metalloproteinase (MMP)-9, tissue inhibitors of metalloproteinase (TIMP)-1, and phosphorylated ERK1/2 were investigated by immunofluorescence, real-time polymerase chain reaction (PCR), and Western blot analysis. Cerebral blood flow (CBF) was measured using autoradiography. Protein levels of MMP-9, TIMP-1, iNOS, IL-6, and IL-1β were increased after SAH, as were mRNA levels of IL-6, MMP-9, and TIMP-1. After SAH, pERK1/2 was increased, but CBF was reduced. Treatment with SB-386023-b at 0 or 6 hours after SAH normalized CBF and prevented SAH-induced upregulation of MMPs, pro-inflammatory cytokines, and pERK1/2 proteins. These results suggested that inhibition of MEK/ERK signal transduction by a specific raf inhibitor administered up to 6 hours after SAH normalized the expression of pro-inflammatory mediators and extracellular matrix-related genes.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB770
    Nombre del producto:
    Anti-TIMP-1 Antibody
  • Ubiquitination of inducible nitric oxide synthase is required for its degradation. 12221289

    Inducible nitric oxide synthase (iNOS) is responsible for nitric oxide (NO) synthesis from l-arginine in response to inflammatory mediators. We have previously shown that iNOS is degraded through the 26S proteasome. Targeting of proteins for proteasomal degradation may or may not require their covalent linkage to multiubiquitin chains (ubiquitination). In addition, ubiquitination of a protein can serve functions other than signaling proteolysis. In this context, it is not known whether iNOS is subject to ubiquitination or whether ubiquitination is required for its degradation. In this study, we show that iNOS, expressed in HEK293 cells or induced in primary bronchial epithelial cells, A549 cells, or murine macrophages, is subject to ubiquitination. To investigate whether iNOS ubiquitination is required for its degradation, HEK293T cells were cotransfected with plasmids containing cDNAs of human iNOS and of the dominant negative ubiquitin mutant K48R. Disruption of ubiquitination by K48R ubiquitin resulted in inhibition of iNOS degradation. ts20 is a mutant cell line that contains a thermolabile ubiquitin-activating enzyme (E1) that is inactivated at elevated temperature, preventing ubiquitination. Incubation of ts20 cells, stably expressing human iNOS, at the nonpermissive temperature (40 degrees C) resulted in inhibition of iNOS degradation and marked accumulation of iNOS. These studies indicate that iNOS is subject to ubiquitination and that ubiquitination is required for its degradation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Distribution of neuronal nitric oxide synthase-immunoreactive neurons in the cerebral cortex and hippocampus during postnatal development. 15609089

    Although many reports have argued a role for nitric oxide (NO) during postnatal development, there has been no combined demonstration in the cerebral cortex and hippocampus. We have investigated the distribution and morphology of neurons and fibers expressing neuronal NO synthase (nNOS) in the cerebral cortex and hippocampal formation of rats during the postnatal development, and correlated these findings with developmental events taking place in these regions. In the cerebral cortex, the nNOS-immunoreactive cells could be divided into two classes : heavily stained neurons and lightly stained neurons. For the lightly stained nNOS-positive neurons, only the cell bodies were observed, whereas for the heavily stained neurons, the cell bodies and their dendrites were visible. During the postnatal days, heavily stained neurons reached their typical morphology in the second week and appeared in all layers except for layer I. In the hippocampus, there was a transient expression of nNOS in the pyramidal cell layer at P3-P7, and this expression disappeared during following days. The adult pattern of staining developed gradually during the postnatal period. This study suggested that these alterations might reflect a region-specific role of NO and a potential developmental role in the postnatal cerebral cortex and hippocampus.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1632
    Nombre del producto:
    Anti-Nitric Oxide Synthase I Antibody