HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. Beharry, AW; Sandesara, PB; Roberts, BM; Ferreira, LF; Senf, SM; Judge, AR Journal of cell science
127
1441-53
2014
Afficher le résumé
The Forkhead box O (FoxO) transcription factors are activated, and necessary for the muscle atrophy, in several pathophysiological conditions, including muscle disuse and cancer cachexia. However, the mechanisms that lead to FoxO activation are not well defined. Recent data from our laboratory and others indicate that the activity of FoxO is repressed under basal conditions via reversible lysine acetylation, which becomes compromised during catabolic conditions. Therefore, we aimed to determine how histone deacetylase (HDAC) proteins contribute to activation of FoxO and induction of the muscle atrophy program. Through the use of various pharmacological inhibitors to block HDAC activity, we demonstrate that class I HDACs are key regulators of FoxO and the muscle-atrophy program during both nutrient deprivation and skeletal muscle disuse. Furthermore, we demonstrate, through the use of wild-type and dominant-negative HDAC1 expression plasmids, that HDAC1 is sufficient to activate FoxO and induce muscle fiber atrophy in vivo and is necessary for the atrophy of muscle fibers that is associated with muscle disuse. The ability of HDAC1 to cause muscle atrophy required its deacetylase activity and was linked to the induction of several atrophy genes by HDAC1, including atrogin-1, which required deacetylation of FoxO3a. Moreover, pharmacological inhibition of class I HDACs during muscle disuse, using MS-275, significantly attenuated both disuse muscle fiber atrophy and contractile dysfunction. Together, these data solidify the importance of class I HDACs in the muscle atrophy program and indicate that class I HDAC inhibitors are feasible countermeasures to impede muscle atrophy and weakness. | Western Blotting | 24463822
|
DNA damage signals through differentially modified E2F1 molecules to induce apoptosis. Carnevale, J; Palander, O; Seifried, LA; Dick, FA Molecular and cellular biology
32
900-12
2011
Afficher le résumé
E2F transcription can lead to cell proliferation or apoptosis, indicating that E2Fs control opposing functions. In a similar manner, DNA double-strand breaks can signal to induce cell cycle arrest or apoptosis. Specifically, pRB is activated following DNA damage, allowing it to bind to E2Fs and block transcription at cell cycle promoters; however, E2F1 is simultaneously activated, leading to transcription at proapoptotic promoters. We examined this paradoxical control of E2F transcription by studying how E2F1's interaction with pRB is regulated following DNA damage. Our work reveals that DNA damage signals create multiple forms of E2F1 that contain mutually exclusive posttranslational modifications. Specifically, E2F1 phospho-serine 364 is found only in complex with pRB, while E2F1 phosphorylation at serine 31 and acetylation function to create a pRB-free form of E2F1. Both pRB-bound and pRB-free modifications on E2F1 are essential for the activation of TA-p73 and the maximal induction of apoptosis. Chromatin immunoprecipitation demonstrated that E2F1 phosphorylated on serine 364 is also present at proapoptotic gene promoters during the induction of apoptosis. This indicates that distinct populations of E2F1 are organized in response to DNA damage signaling. Surprisingly, these complexes act in parallel to activate transcription of proapoptotic genes. Our data suggest that DNA damage signals alter pRB and E2F1 to engage them in functions leading to apoptotic induction that are distinct from pRB-E2F regulation in cell cycle control. | Western Blotting | 22184068
|
Aurora B interacts with NIR-p53, leading to p53 phosphorylation in its DNA-binding domain and subsequent functional suppression. Wu, L; Ma, CA; Zhao, Y; Jain, A The Journal of biological chemistry
286
2236-44
2010
Afficher le résumé
NIR (novel INHAT repressor) is a transcriptional co-repressor with inhibitor of histone acetyltransferase (INHAT) activity and has previously been shown to physically interact with and suppress p53 transcriptional activity and function. However, the mechanism by which NIR suppresses p53 is not completely understood. Using a proteomic approach, we have identified the Aurora kinase B as a novel binding partner of NIR. We show that Aurora B, NIR and p53 exist in a protein complex in which Aurora B binds to NIR, thus also indirectly associates with p53. Functionally, overexpression of Aurora B or NIR suppresses p53 transcriptional activity, and depletion of Aurora B or NIR causes p53-dependent apoptosis and cell growth arrest, due to the up-regulation of p21 and Bax. We then demonstrate that Aurora B phosphorylates multiple sites in the p53 DNA-binding domain in vitro, and this phosphorylation probably also occurs in cells. Importantly, the Aurora B-mediated phosphorylation on Ser(269) or Thr(284) significantly compromises p53 transcriptional activity. Taken together, these results provide novel insight into NIR-mediated p53 suppression and also suggest an additional way for p53 regulation. | | 20959462
|
p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle. Senf, SM; Sandesara, PB; Reed, SA; Judge, AR American journal of physiology. Cell physiology
300
C1490-501
2010
Afficher le résumé
The Forkhead Box O (FOXO) transcription factors regulate diverse cellular processes, and in skeletal muscle are both necessary and sufficient for muscle atrophy. Although the regulation of FOXO by Akt is well evidenced in skeletal muscle, the current study demonstrates that FOXO is also regulated in muscle via the histone acetyltransferase (HAT) activities of p300/CREB-binding protein (CBP). Transfection of rat soleus muscle with a dominant-negative p300, which lacks HAT activity and inhibits endogenous p300 HAT activity, increased FOXO reporter activity and induced transcription from the promoter of a bona fide FOXO target gene, atrogin-1. Conversely, increased HAT activity via transfection of either wild-type (WT) p300 or WT CBP repressed FOXO activation in vivo in response to muscle disuse, and in C2C12 cells in response to dexamethasone and acute starvation. Importantly, manipulation of HAT activity differentially regulated the expression of various FOXO target genes. Cotransfection of FOXO1, FOXO3a, or FOXO4 with the p300 constructs further identified p300 HAT activity to also differentially regulate the activity of the FOXO homologues. Markedly, decreased HAT activity strongly increased FOXO3a transcriptional activity, while increased HAT activity repressed FOXO3a activity and prevented its nuclear localization in response to nutrient deprivation. In contrast, p300 increased FOXO1 nuclear localization. In summary, this study provides the first evidence to support the acetyltransferase activities of p300/CBP in regulating FOXO signaling in skeletal muscle and suggests that acetylation may be an important mechanism to differentially regulate the FOXO homologues and dictate which FOXO target genes are activated in response to varying atrophic stimuli. | | 21389279
|
SIRT1 acts as a modulator of neointima formation following vascular injury in mice. Li, L; Zhang, HN; Chen, HZ; Gao, P; Zhu, LH; Li, HL; Lv, X; Zhang, QJ; Zhang, R; Wang, Z; She, ZG; Zhang, R; Wei, YS; Du, GH; Liu, DP; Liang, CC Circulation research
108
1180-9
2010
Afficher le résumé
Vascular smooth muscle cell (VSMC) proliferation and migration are crucial events involved in the pathophysiology of vascular diseases. Sirtuin 1 (SIRT1), a class III histone deacetylase (HDAC), has been reported to have the function of antiatherosclerosis, but its role in neointima formation remains unknown.The present study was designed to investigate the role of SIRT1 in the regulation of neointima formation and to elucidate the underlying mechanisms.A decrease in SIRT1 expression was observed following carotid artery ligation. smooth muscle cell (SMC)-specific human SIRT1 transgenic (Tg) mice were generated. SIRT1 overexpression substantially inhibited neointima formation after carotid artery ligation or carotid artery wire injury. In the intima of injured carotid arteries, VSMC proliferation (proliferating cell nuclear antigen (PCNA)-positive cells) was significantly reduced. SIRT1 overexpression markedly inhibited VSMC proliferation and migration and induced cell cycle arrest at G1/S transition in vitro. Accordingly, SIRT1 overexpression decreased the induction of cyclin D1 and matrix metalloproteinase-9 (MMP-9) expression by treatment with serum and TNF-α, respectively, whereas RNAi knockdown of SIRT1 resulted in the opposite effect. Decreased cyclin D1 and MMP-9 expression/activity were also observed in injured carotid arteries from SMC-SIRT1 Tg mice. Furthermore, 2 targets of SIRT1, c-Fos and c-Jun, were involved in the downregulation of cyclin D1 and MMP-9 expression.Our findings demonstrate the inhibitory effect of SIRT1 on the VSMC proliferation and migration that underlie neointima formation and implicate SIRT1 as a potential target for intervention in vascular diseases. | Western Blotting | 21474819
|
GmPHD5 acts as an important regulator for crosstalk between histone H3K4 di-methylation and H3K14 acetylation in response to salinity stress in soybean. Wu, T; Pi, EX; Tsai, SN; Lam, HM; Sun, SM; Kwan, YW; Ngai, SM BMC plant biology
11
178
2010
Afficher le résumé
Accumulated evidence suggest that specific patterns of histone posttranslational modifications (PTMs) and their crosstalks may determine transcriptional outcomes. However, the regulatory mechanisms of these "histone codes" in plants remain largely unknown.In this study, we demonstrate for the first time that a salinity stress inducible PHD (plant homeodomain) finger domain containing protein GmPHD5 can read the "histone code" underlying the methylated H3K4. GmPHD5 interacts with other DNA binding proteins, including GmGNAT1 (an acetyl transferase), GmElongin A (a transcription elongation factor) and GmISWI (a chromatin remodeling protein). Our results suggest that GmPHD5 can recognize specific histone methylated H3K4, with preference to di-methylated H3K4. Here, we illustrate that the interaction between GmPHD5 and GmGNAT1 is regulated by the self-acetylation of GmGNAT1, which can also acetylate histone H3. GmGNAT1 exhibits a preference toward acetylated histone H3K14. These results suggest a histone crosstalk between methylated H3K4 and acetylated H3K14. Consistent to its putative roles in gene regulation under salinity stress, we showed that GmPHD5 can bind to the promoters of some confirmed salinity inducible genes in soybean.Here, we propose a model suggesting that the nuclear protein GmPHD5 is capable of regulating the crosstalk between histone methylation and histone acetylation of different lysine residues. Nevertheless, GmPHD5 could also recruit chromatin remodeling factors and transcription factors of salt stress inducible genes to regulate their expression in response to salinity stress. | | 22168212
|
AAA+ proteins RUVBL1 and RUVBL2 coordinate PIKK activity and function in nonsense-mediated mRNA decay. Izumi N, Yamashita A, Iwamatsu A, Kurata R, Nakamura H, Saari B, Hirano H, Anderson P, Ohno S Sci Signal
3
ra27.
2009
Afficher le résumé
Phosphatidylinositol 3-kinase-related protein kinase (PIKK) family proteins play essential roles in DNA-based and RNA-based processes, such as the response to DNA damage, messenger RNA (mRNA) quality control, transcription, and translation, where they contribute to the maintenance of genome integrity and accurate gene expression. The adenosine triphosphatases associated with diverse cellular activities (AAA+) family proteins RuvB-like 1 (RUVBL1) and RUVBL2 are involved in various cellular processes, including transcription, RNA modification, DNA repair, and telomere maintenance. We show that RUVBL1 and RUVBL2 associate with each PIKK family member. We also show that RUVBL1 and RUVBL2 control PIKK abundance at least at the mRNA level. Knockdown of RUVBL1 or RUVBL2 decreased PIKK abundance and impaired PIKK-mediated signaling. Analysis of SMG-1, a PIKK family member involved in nonsense-mediated mRNA decay (NMD), revealed an essential role for RUVBL1 and RUVBL2 in NMD. RUVBL1 and RUVBL2 associated with SMG-1 and the messenger ribonucleoproteins in the cytoplasm and promoted the formation of mRNA surveillance complexes during NMD. Thus, RUVBL1 and RUVBL2 regulate PIKK functions on two different levels: They control the abundance of PIKKs, and they stimulate the formation of PIKK-containing molecular complexes, such as those involved in NMD. | | 20371770
|
Chromatin loading of E2F-MLL complex by cancer-associated coregulator ANCCA via reading a specific histone mark. Revenko, AS; Kalashnikova, EV; Gemo, AT; Zou, JX; Chen, HW Molecular and cellular biology
30
5260-72
2009
Afficher le résumé
Histone modifications are regarded as the carrier of epigenetic memory through cell divisions. How the marks facilitate cell cycle-dependent gene expression is poorly understood. The evolutionarily conserved AAA ATPase ANCCA (AAA nuclear coregulator cancer-associated protein)/ATAD2 was identified as a direct target of oncogene AIB1/ACTR/SRC-3 and a transcriptional coregulator for estrogen and androgen receptors and is strongly implicated in tumorigenesis. We report here that ANCCA directly interacts with E2F1 to E2F3 and that its N terminus interacts with both the N and C termini of E2F1. ANCCA preferentially associates via its bromodomain with H3 acetylated at lysine 14 (H3K14ac) and is required for key cell cycle gene expression and cancer cell proliferation. ANCCA associates with chromosomes at late mitosis, and its occupancy at E2F targets peaks at the G(1)-to-S transition. Strikingly, ANCCA is required for recruitment of specific E2Fs to their targets and chromatin assembly of the host cell factor 1 (HCF-1)-MLL histone methyltransferase complex. ANCCA depletion results in a marked decrease of the gene activation-linked H3K4me3 mark. Bromodomain mutations disable ANCCA function as an E2F coactivator and its ability to promote cancer cell proliferation, while ANCCA overexpression in tumors correlates with tumor growth. Together, these results suggest that ANCCA acts as a pioneer factor in E2F-dependent gene activation and that a novel mechanism involving ANCCA bromodomain may contribute to cancer cell proliferation. Article en texte intégral | | 20855524
|
CCAAT/enhancer binding protein beta2 is involved in growth hormone-regulated insulin-like growth factor-II gene expression in the liver of rainbow trout (Oncorhynchus mykiss). Lo, JH; Chen, TT Endocrinology
151
2128-39
2009
Afficher le résumé
Previously, we showed that levels of different CCAAT/enhancer binding protein (C/EBP) mRNAs in the liver of rainbow trout were modulated by GH and suggested that C/EBPs might be involved in GH-induced IGF-II gene expression. As a step toward further investigation, we have developed monospecific polyclonal antibodies to detect rainbow trout C/EBPalpha, -beta1, -beta2, and -delta2 isoform proteins. Injection of GH into adult rainbow trout resulted in a significant increase of C/EBPbeta1, C/EBPbeta2, and C/EBPdelta2 proteins in the liver. Chromatin immunoprecipitation analysis revealed that C/EBPbeta2 binds to multiple sites at the 5' promoter/regulatory region, introns, and the 3' untranslated region of the IGF-II gene. GH treatment reduced C/EBPbeta2 binding to several of these regions at 6 h after injection. The decreased occupancy of C/EBPbeta2 coincided well with an increase of histone H4 acetylation at the proximal promoter and elevation of the IGF-II mRNA level. Immunoblotting analysis showed that C/EBPbeta2 existed predominately as a truncated form in the liver, and cotransfection analysis further showed that the truncated C/EBPbeta2 acted as a negative regulator on IGF-II proximal promoter. GH treatment caused deacetylation of C/EBPbeta2 in the liver. In addition, we observed a GH-dependent interaction of C/EBPbeta2 with a complex involving histone H1. All together, these results suggest that C/EBPbeta2 was regulated at multiple levels by GH, and C/EBPbeta2 may play a suppressive role in mediating GH-induced IGF-II expression in the liver of rainbow trout. | | 20228168
|
Phosphorylation of ARD1 by IKKbeta contributes to its destabilization and degradation. Kuo, HP; Lee, DF; Xia, W; Lai, CC; Li, LY; Hung, MC Biochemical and biophysical research communications
389
156-61
2009
Afficher le résumé
IkappaB kinase beta (IKKbeta), a major kinase downstream of various proinflammatory signals, mediates multiple cellular functions through phosphorylation and regulation of its substrates. On the basis of protein sequence analysis, we identified arrest-defective protein 1 (ARD1), a protein involved in apoptosis and cell proliferation processes in many human cancer cells, as a new IKKbeta substrate. We provided evidence showing that ARD1 is indeed a bona fide substrate of IKKbeta. IKKbeta physically associated with ARD1 and phosphorylated it at Ser209. Phosphorylation by IKKbeta destabilized ARD1 and induced its proteasome-mediated degradation. Impaired growth suppression was observed in ARD1 phosphorylation-mimic mutant (S209E)-transfected cells as compared with ARD1 non-phosphorylatable mutant (S209A)-transfected cells. Our findings of molecular interactions between ARD1 and IKKbeta may enable further understanding of the upstream regulation mechanisms of ARD1 and of the diverse functions of IKKbeta. | | 19716809
|