Connexin43 Mediated Delivery of ADAMTS5 Targeting siRNAs from Mesenchymal Stem Cells to Synovial Fibroblasts. Liu, S; Niger, C; Koh, EY; Stains, JP PloS one
10
e0129999
2015
Afficher le résumé
Osteoarthritis is a joint-destructive disease that has no effective cure. Human mesenchymal stem cells (hMSCs) could offer therapeutic benefit in the treatment of arthritic diseases by suppressing inflammation and permitting tissue regeneration, but first these cells must overcome the catabolic environment of the diseased joint. Likewise, gene therapy also offers therapeutic promise given its ability to directly modulate key catabolic factors that mediate joint deterioration, although it too has limitations. In the current study, we explore an approach that combines hMSCs and gene therapy. Specifically, we test the use of hMSC as a vehicle to deliver ADAMTS5 (an aggrecanase with a key role in osteoarthritis)-targeting siRNAs to SW982 synovial fibroblast-like cells via connexin43 containing gap junctions. Accordingly, we transduced hMSCs with ADAMTS5-targeting shRNA or non-targeted shRNA, and co-cultured them with synovial fibroblasts to allow delivery of siRNAs from hMSC to synovial fibroblasts. We found that co-culture of hMSCs-shRNA-ADAMTS5 and synovial fibroblasts reduced ADAMTS5 expression relative to co-culture of hMSCs-shRNA-control and synovial fibroblasts. Furthermore, ADAMTS5 was specifically reduced in the synovial fibroblasts populations as determined by fluorescence-activated cell sorting, suggesting transfer of the siRNA between cells. To test if Cx43-containing gap junctions are involved in the transfer of siRNA, we co-cultured hMSCs-shRNA-ADAMTS5 cells with synovial fibroblasts in which connexin43 was knocked down. Under these conditions, ADAMTS5 levels were not inhibited by co-culture, indicating that connexin43 mediates the delivery of siRNA from hMSCs to synovial fibroblasts. In total, our findings demonstrate that hMSCs can function as donor cells to host and deliver siRNAs to synovial fibroblasts via connexin43 gap junction in vitro. These data may have implications in the combination of hMSCs and gene therapy to treat diseases like osteoarthritis, in vivo. | | 26076025
|
Decreased serotonin transporter immunoreactivity in the human hypothalamic infundibular nucleus of overweight subjects. Borgers, AJ; Koopman, KE; Bisschop, PH; Serlie, MJ; Swaab, DF; Fliers, E; la Fleur, SE; Alkemade, A Frontiers in neuroscience
8
106
2014
Afficher le résumé
That serotonin plays a role in the regulation of feeding behavior and energy metabolism has been known for a long time. Serotonin transporters (SERT) play a crucial role in serotonin signaling by regulating its availability in the synaptic cleft. The neuroanatomy underlying serotonergic signaling in humans is largely unknown, and until now, SERT immunoreactivity in relation to body weight has not been investigated.To clarify the distribution of SERT immunoreactivity throughout the human hypothalamus and to compare SERT immunoreactivity in the infundibular nucleus (IFN), the human equivalent of the arcuate nucleus, in lean and overweight subjects.First, we investigated the distribution of serotonin transporters (SERT) over the rostro-caudal axis of six post-mortem hypothalami by means of immunohistochemistry. Second, we estimated SERT immunoreactivity in the IFN of lean and overweight subjects. Lastly, double-labeling of SERT with Neuropeptide Y (NPY) and melanocortin cell populations was performed to further identify cells showing basket-like SERT staining.SERT-immunoreactivity was ubiquitously expressed in fibers throughout the hypothalamus and was the strongest in the IFN. Immunoreactivity in the IFN was lower in overweight subjects (p = 0.036). Basket-like staining in the IFN was highly suggestive of synaptic innervation. A very small minority of cells showed SERT double labeling with NPY, agouti-related protein and α-melanocyte stimulating hormone.SERT is ubiquitously expressed in the human hypothalamus. Strong SERT immunoreactivity, was observed in the IFN a region important for appetite regulation, in combination with lower SERT immunoreactivity in the IFN of overweight and obese subjects, may point toward a role for hypothalamic SERT in human obesity. | | 24860418
|
Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway. Blackiston, D; Adams, DS; Lemire, JM; Lobikin, M; Levin, M Disease models & mechanisms
4
67-85
2010
Afficher le résumé
Understanding the mechanisms that coordinate stem cell behavior within the host is a high priority for developmental biology, regenerative medicine and oncology. Endogenous ion currents and voltage gradients function alongside biochemical cues during pattern formation and tumor suppression, but it is not known whether bioelectrical signals are involved in the control of stem cell progeny in vivo. We studied Xenopus laevis neural crest, an embryonic stem cell population that gives rise to many cell types, including melanocytes, and contributes to the morphogenesis of the face, heart and other complex structures. To investigate how depolarization of transmembrane potential of cells in the neural crest's environment influences its function in vivo, we manipulated the activity of the native glycine receptor chloride channel (GlyCl). Molecular-genetic depolarization of a sparse, widely distributed set of GlyCl-expressing cells non-cell-autonomously induces a neoplastic-like phenotype in melanocytes: they overproliferate, acquire an arborized cell shape and migrate inappropriately, colonizing numerous tissues in a metalloprotease-dependent fashion. A similar effect was observed in human melanocytes in culture. Depolarization of GlyCl-expressing cells induces these drastic changes in melanocyte behavior via a serotonin-transporter-dependent increase of extracellular serotonin (5-HT). These data reveal GlyCl as a molecular marker of a sparse and heretofore unknown cell population with the ability to specifically instruct neural crest derivatives, suggest transmembrane potential as a tractable signaling modality by which somatic cells can control stem cell behavior at considerable distance, identify a new biophysical aspect of the environment that confers a neoplastic-like phenotype upon stem cell progeny, reveal a pre-neural role for serotonin and its transporter, and suggest a novel strategy for manipulating stem cell behavior. | Immunohistochemistry | 20959630
|
Serotonin neurons derived from rhesus monkey embryonic stem cells: similarities to CNS serotonin neurons Salli, Ugur, et al Exp Neurol, 188:351-364 (2004)
2004
| | 15246835
|
Serotonin and cocaine-sensitive inactivation of human serotonin transporters by methanethiosulfonates targeted to transmembrane domain I Henry, L Keith, et al J Biol Chem, 278:37052-63 (2003)
2003
| | 12869570
|
Serotonin transporter function and pharmacology are sensitive to expression level: evidence for an endogenous regulatory factor Ramsey, I Scott and DeFelice, Louis J J Biol Chem, 277:14475-82 (2002)
2002
| | 11844791
|
5-Hydroxytryptamine drives apoptosis in biopsylike Burkitt lymphoma cells: reversal by selective serotonin reuptake inhibitors. Serafeim, Adamantios, et al. Blood, 99: 2545-53 (2002)
2002
Afficher le résumé
Serotonin (5-HT), a well-known neurotransmitter of the central nervous system, has been implicated in diverse aspects of immune regulation. Here we show that 5-HT can efficiently drive programmed cell death in established Burkitt lymphoma (BL) lines that remain faithful to the original biopsy phenotype (group 1). Group 1 BL cells cultured in the presence of 5-HT exhibited marked suppression of DNA synthesis that was accompanied by extensive apoptosis-serotonin-driven apoptosis was complete within 24 hours, was preceded by early caspase activation, and was accompanied by a decline in mitochondrial membrane potential. BL cells that had drifted to a lymphoblastic group 3 phenotype were relatively resistant to these actions of serotonin, and the forced ectopic expression of either bcl-2 or bcl-x(L) provided substantial protection from 5-HT-induced apoptosis. 5-HT receptor antagonists (SDZ205-557, granisetron, methysergide) failed to inhibit serotonin-induced apoptosis, whereas the selective serotonin reuptake inhibitors (SSRI)-fluoxetine (Prozac), paroxetine (Paxil), and citalopram (Celexa)-substantially blocked the monoamine actions. Western blot analysis showed that BL cells expressed protein for the 5-HT transporter, and transport assays confirmed active uptake of serotonin by the cells. Unlike what was suggested for neuronal cells, there was no evidence that intracellular oxidative metabolites were responsible for the 5-HT-induced programmed death of BL cells. These data indicate that serotonin drives apoptosis in biopsylike BL cells after its entry through an active transport mechanism, and they suggest a novel therapeutic modality for Burkitt lymphoma. | | 11895792
|
A comparison of anti-biotin and biotinylated anti-avidin double-bridge and biotinylated tyramide immunohistochemical amplification Freedman, L J and Maddox, M T J Neurosci Methods, 112:43-9 (2001)
2001
| | 11640956
|
Cocaine and antidepressant-sensitive biogenic amine transporters exist in regulated complexes with protein phosphatase 2A Bauman, A L, et al J Neurosci, 20:7571-8 (2000)
1999
| | 11027216
|