Increased adenovirus Type 5 mediated transgene expression due to RhoB down-regulation. Majhen, D; Stojanović, N; Vukić, D; Pichon, C; Leduc, C; Osmak, M; Ambriović-Ristov, A PloS one
9
e86698
2014
Afficher le résumé
Adenovirus type 5 (Ad5) is a non-enveloped DNA virus frequently used as a gene transfer vector. Efficient Ad5 cell entry depends on the availability of its primary receptor, coxsackie and adenovirus receptor, which is responsible for attachment, and integrins, secondary receptors responsible for adenovirus internalization via clathrin-mediated endocytosis. However, efficacious adenovirus-mediated transgene expression also depends on successful trafficking of Ad5 particles to the nucleus of the target cell. It has been shown that changes occurring in tumor cells during development of resistance to anticancer drugs can be beneficial for adenovirus mediated transgene expression. In this study, using an in vitro model consisting of a parental cell line, human laryngeal carcinoma HEp2 cells, and a cisplatin-resistant clone CK2, we investigated the cause of increased Ad5-mediated transgene expression in CK2 as compared to HEp2 cells. We show that the primary cause of increased Ad5-mediated transgene expression in CK2 cells is not modulation of receptors on the cell surface or change in Ad5wt attachment and/or internalization, but is rather the consequence of decreased RhoB expression. We propose that RhoB plays an important role in Ad5 post-internalization events and more particularly in Ad5 intracellular trafficking. To the best of our knowledge, this is the first study showing changed Ad5 trafficking pattern between cells expressing different amount of RhoB, indicating the role of RhoB in Ad5 intracellular trafficking. | | | 24466204
|
Tropism-modified AAV vectors overcome barriers to successful cutaneous therapy. Sallach, J; Di Pasquale, G; Larcher, F; Niehoff, N; Rübsam, M; Huber, A; Chiorini, J; Almarza, D; Eming, SA; Ulus, H; Nishimura, S; Hacker, UT; Hallek, M; Niessen, CM; Büning, H Molecular therapy : the journal of the American Society of Gene Therapy
22
929-39
2014
Afficher le résumé
Autologous human keratinocytes (HK) forming sheet grafts are approved as skin substitutes. Genetic engineering of HK represents a promising technique to improve engraftment and survival of transplants. Although efficacious in keratinocyte-directed gene transfer, retro-/lentiviral vectors may raise safety concerns when applied in regenerative medicine. We therefore optimized adeno-associated viral (AAV) vectors of the serotype 2, characterized by an excellent safety profile, but lacking natural tropism for HK, through capsid engineering. Peptides, selected by AAV peptide display, engaged novel receptors that increased cell entry efficiency by up to 2,500-fold. The novel targeting vectors transduced HK with high efficiency and a remarkable specificity even in mixed cultures of HK and feeder cells. Moreover, differentiated keratinocytes in organotypic airlifted three-dimensional cultures were transduced following topical vector application. By exploiting comparative gene analysis we further succeeded in identifying αvβ8 integrin as a target receptor thus solving a major challenge of directed evolution approaches and describing a promising candidate receptor for cutaneous gene therapy. | | | 24468915
|
Roles of the putative integrin-binding motif of the human metapneumovirus fusion (f) protein in cell-cell fusion, viral infectivity, and pathogenesis. Wei, Y; Zhang, Y; Cai, H; Mirza, AM; Iorio, RM; Peeples, ME; Niewiesk, S; Li, J Journal of virology
88
4338-52
2014
Afficher le résumé
Human metapneumovirus (hMPV) is a relatively recently identified paramyxovirus that causes acute upper and lower respiratory tract infection. Entry of hMPV is unusual among the paramyxoviruses, in that fusion is accomplished by the fusion (F) protein without the attachment glycoprotein (G protein). It has been suggested that hMPV F protein utilizes integrin αvβ1 as a cellular receptor. Consistent with this, the F proteins of all known hMPV strains possess an integrin-binding motif ((329)RGD(331)). The role of this motif in viral entry, infectivity, and pathogenesis is poorly understood. Here, we show that α5β1 and αv integrins are essential for cell-cell fusion and hMPV infection. Mutational analysis found that residues R329 and G330 in the (329)RGD(331) motif are essential for cell-cell fusion, whereas mutations at D331 did not significantly impact fusion activity. Furthermore, fusion-defective RGD mutations were either lethal to the virus or resulted in recombinant hMPVs that had defects in viral replication in cell culture. In cotton rats, recombinant hMPV with the R329K mutation in the F protein (rhMPV-R329K) and rhMPV-D331A exhibited significant defects in viral replication in nasal turbinates and lungs. Importantly, inoculation of cotton rats with these mutants triggered a high level of neutralizing antibodies and protected against hMPV challenge. Taken together, our data indicate that (i) α5β1 and αv integrins are essential for cell-cell fusion and viral replication, (ii) the first two residues in the RGD motif are essential for fusion activity, and (iii) inhibition of the interaction of the integrin-RGD motif may serve as a new target to rationally attenuate hMPV for the development of live attenuated vaccines.Human metapneumovirus (hMPV) is one of the major causative agents of acute respiratory disease in humans. Currently, there is no vaccine or antiviral drug for hMPV. hMPV enters host cells via a unique mechanism, in that viral fusion (F) protein mediates both attachment and fusion activity. Recently, it was suggested that hMPV F protein utilizes integrins as receptors for entry via a poorly understood mechanism. Here, we show that α5β1 and αv integrins are essential for hMPV infectivity and F protein-mediated cell-cell fusion and that the integrin-binding motif in the F protein plays a crucial role in these functions. Our results also identify the integrin-binding motif to be a new, attenuating target for the development of a live vaccine for hMPV. These findings not only will facilitate the development of antiviral drugs targeting viral entry steps but also will lead to the development new live attenuated vaccine candidates for hMPV. | | | 24478423
|
Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation. Klingberg, F; Chow, ML; Koehler, A; Boo, S; Buscemi, L; Quinn, TM; Costell, M; Alman, BA; Genot, E; Hinz, B The Journal of cell biology
207
283-97
2014
Afficher le résumé
Integrin-mediated force application induces a conformational change in latent TGF-β1 that leads to the release of the active form of the growth factor from the extracellular matrix (ECM). Mechanical activation of TGF-β1 is currently understood as an acute process that depends on the contractile force of cells. However, we show that ECM remodeling, preceding the activation step, mechanically primes latent TGF-β1 akin to loading a mechanical spring. Cell-based assays and unique strain devices were used to produce a cell-derived ECM of controlled organization and prestrain. Mechanically conditioned ECM served as a substrate to measure the efficacy of TGF-β1 activation after cell contraction or direct force application using magnetic microbeads. The release of active TGF-β1 was always higher from prestrained ECM as compared with unorganized and/or relaxed ECM. The finding that ECM prestrain regulates the bioavailability of TGF-β1 is important to understand the context of diseases that involve excessive ECM remodeling, such as fibrosis or cancer. | | | 25332161
|
Efficient downregulation of VEGF in retinal pigment epithelial cells by integrin ligand-labeled liposome-mediated siRNA delivery. Chen, CW; Yeh, MK; Shiau, CY; Chiang, CH; Lu, DW International journal of nanomedicine
8
2613-27
2013
Afficher le résumé
The purpose of this study was to demonstrate the effectiveness of an integrin peptide ligand-labeled liposomal delivery system loaded with vascular endothelial growth factor (VEGF)-siRNA in a model study of gene therapy for retinopathy using human retinal pigment epithelial cells.Arg(R)-Gly(G)-Asp(D) motif peptide conjugating polyethylene glycol modified (RGD-PEGylated) liposomes were prepared using a thin-film hydration method and optimized for surface charge, particle size, small interfering RNA (siRNA) load, and entrapment efficiency. Reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assays were used to determine VEGF levels in retinal pigment epithelial cells. Cytotoxicity was determined using the 3-[4, 5-dimethylthiazol-2-yl]-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and flow cytometry.Physicochemical properties, including particle size, zeta potential, and siRNA load, of the prepared RGD-PEGylated liposomes and their entrapment efficiency were determined to be within the following ranges: 123.8-234.1 nm, 17.31-40.09 m V, 5.27%-6.33%, and greater than 97%, respectively. RGD-PEGylated liposome-mediated fluorescent-labeled siRNA delivery demonstrated significantly enhanced cellular uptake, and 3 mol% RGD-PEGylated liposomes (having 3β-[N-(N', N'-dimethylaminoethane) carbamoyl] cholesterol (DC-cholesterol) DSPE and DSPE-PEG(2000)-RGD with molar ratio of 50/47/3) were shown to have better efficacy with regard to specificity for retinal pigment epithelial cells, reduced cytotoxicity, and knockdown of the target molecule.By integrin receptor-mediated endocytosis, 3 mol% RGD-PEGylated liposomes were shown to be a suitable vector when loaded with VEGF-siRNA for efficient downregulation of VEGF in retinal pigment epithelial cells at both the protein and gene levels. This integrin ligand-modified liposomal delivery system has therapeutic potential for ocular gene therapy. | | | 23901275
|
The differentiation of pancreatic tumor-initiating cells by vitronectin can be blocked by cilengitide. Cabarcas, SM; Sun, L; Mathews, L; Thomas, S; Zhang, X; Farrar, WL Pancreas
42
861-70
2013
Afficher le résumé
Pancreatic cancer is a leading cancer type and its molecular pathology is poorly understood. The only potentially curative therapeutic option available is complete surgical resection; however, this is inadequate as most of the patients are diagnosed at an advanced or metastatic stage. Tumor-initiating cells (TICs) constitute a subpopulation of cells within a solid tumor that sustain tumor growth, metastasis, and chemo/radioresistance. Within pancreatic cancer, TICs have been identified based on the expression of specific cell surface markers.We use a sphere formation assay to enrich putative TICs and use human serum as a driver of differentiation. We demonstrate by using specific blocking reagents that we can inhibit the differentiation process and maintain TIC-associated markers and genes.We can induce differentiation of pancreatospheres with the addition of human serum, and we identified vitronectin as an inducer of differentiation. We inhibit differentiation by human serum using an arginine-glycine-aspartate-specific peptide, which is Cilengitide; hence, demonstrating this differentiation is mediated via specific integrin receptors.Overall, our studies further the definition of pancreatic TICs and provide further insight into both the maintenance and differentiation of this lethal population. | | | 23462327
|
Integrin control of the transforming growth factor-β pathway in glioblastoma. Roth, P; Silginer, M; Goodman, SL; Hasenbach, K; Thies, S; Maurer, G; Schraml, P; Tabatabai, G; Moch, H; Tritschler, I; Weller, M Brain : a journal of neurology
136
564-76
2013
Afficher le résumé
Transforming growth factor-β is a central mediator of the malignant phenotype of glioblastoma, the most common and malignant form of intrinsic brain tumours. Transforming growth factor-β promotes invasiveness and angiogenesis, maintains cancer cell stemness and induces profound immunosuppression in the host. Integrins regulate cellular adhesion and transmit signals important for cell survival, proliferation, differentiation and motility, and may be involved in the activation of transforming growth factor-β. We report that αvβ3, αvβ5 and αvβ8 integrins are broadly expressed not only in glioblastoma blood vessels but also in tumour cells. Exposure to αv, β3 or β5 neutralizing antibodies, RNA interference-mediated integrin gene silencing or pharmacological integrin inhibition using the cyclic RGD peptide EMD 121974 (cilengitide) results in reduced phosphorylation of Smad2 in most glioma cell lines, including glioma-initiating cell lines and reduced transforming growth factor-β-mediated reporter gene activity, coinciding with reduced transforming growth factor-β protein levels in the supernatant. Time course experiments indicated that the loss of transforming growth factor-β bioactivity due to integrin inhibition likely results from two distinct mechanisms: an early effect on activation of preformed inactive protein, and second, major effect on transforming growth factor-β gene transcription as confirmed by decreased activity of the transforming growth factor-β gene promoter and decreased transforming growth factor-β(1) and transforming growth factor-β(2) messenger RNA expression levels. In vivo, EMD 121974 (cilengitide), which is currently in late clinical development as an antiangiogenic agent in newly diagnosed glioblastoma, was a weak antagonist of pSmad2 phosphorylation. These results validate integrin inhibition as a promising strategy not only to inhibit angiogenesis, but also to block transforming growth factor-β-controlled features of malignancy including invasiveness, stemness and immunosuppression in human glioblastoma. | Immunohistochemistry | | 23378223
|
Increased expression of the coxsackie and adenovirus receptor downregulates αvβ3 and αvβ5 integrin expression and reduces cell adhesion and migration. Dragomira Majhen,Nikolina Stojanović,Tea ¦peljko,Anamaria Brozovic,Tihana De Zan,Maja Osmak,Andreja Ambriović-Ristov Life sciences
89
2010
Afficher le résumé
Coxsackie and adenovirus receptor (CAR) is a tumor suppressor and a primary receptor for adenovirus type 5 (Ad5). Our study aims to examine the influence of forced expression of CAR in rhabdomyosarcoma cells (RD) on expression levels of integrins implicated in Ad5 entry, and the effect of CAR on cell-extracellular matrix adhesion and migration. | | | 21712047
|
Active targeting of RGD-conjugated bioreducible polymer for delivery of oncolytic adenovirus expressing shRNA against IL-8 mRNA. Kim, J; Nam, HY; Kim, TI; Kim, PH; Ryu, J; Yun, CO; Kim, SW Biomaterials
32
5158-66
2010
Afficher le résumé
Even though oncolytic adenovirus (Ad) has been highlighted in the field of cancer gene therapy, transductional targeting and immune privilege still remain difficult challenges. The recent reports have noted the increasing tendency of adenoviral surface shielding with polymer to overcome the limits of its practical application. We previously reported the potential of the biodegradable polymer, poly(CBA-DAH) (CD) as a promising candidate for efficient gene delivery. To endow the selective-targeting moiety of tumor vasculature to CD, cRGDfC well-known as a ligand for cell-surface integrins on tumor endothelium was conjugated to CD using hetero-bifunctional cross-linker SM (PEG)(n). The cytopathic effects of oncolytic Ad coated with the polymers were much more enhanced dose-dependently when compared with that of naked Ad in cancer cells selectively. Above all, the most potent oncolytic effect was assessed with the treatment of Ad/CD-PEG(500)-RGD in all cancer cells. The enhanced cytopathic effect of Ad/RGD-conjugated polymer was specifically inhibited by blocking antibodies to integrins, but not by blocking antibody to CAR. HT1080 cells treated with Ad/CD-PEG(500)-RGD showed strong induction of apoptosis and suppression of IL-8 and VEGF expression as well. These results suggest that RGD-conjugated bioreducible polymer might be used to deliver oncolytic Ad safely and efficiently for tumor therapy. | | | 21531456
|
Gene transfer into human cord blood-derived CD34(+) cells by adeno-associated viral vectors. Schuhmann NK, Pozzoli O, Sallach J, Huber A, Avitabile D, Perabo L, Rappl G, Capogrossi MC, Hallek M, Pesce M, Büning H Exp Hematol
38
707-17. Epub 2010 May 4.
2009
Afficher le résumé
OBJECTIVE: Bone marrow-derived CD34(+) cells are currently used in clinical trials in patients with ischemic heart disease. An option to enhance activity of injected progenitors may be offered by genetic engineering of progenitor cells with angiogenic growth factors. Recombinant adeno-associated viral vectors (rAAV) have emerged as a leading gene transfer systems. In contrast to other vector systems in use for genetic engineering of CD34(+) cells, rAAV-mediated gene expression does not depend on vector integration. This is relevant for application in regenerative medicine of ischemic tissues, where transient transgene expression is likely sufficient to achieve therapeutic benefits. | | | 20447441
|