Quantitative proteomics identifies host factors modulated during acute hepatitis E virus infection in the swine model. Rogée, S; Le Gall, M; Chafey, P; Bouquet, J; Cordonnier, N; Frederici, C; Pavio, N Journal of virology
89
129-43
2015
Afficher le résumé
Hepatitis E virus (HEV) causes acute enterically transmitted hepatitis. In industrialized countries, it is a zoonotic disease, with swine being the major reservoir of human HEV contamination. The occurrence and severity of the disease are variable, with clinical symptoms ranging from asymptomatic to self-limiting acute hepatitis, chronic infection, or fulminant hepatitis. In the absence of a robust cell culture system or small-animal models, the HEV life cycle and pathological process remain unclear. To characterize HEV pathogenesis and virulence mechanisms, a quantitative proteomic analysis was carried out to identify cellular factors and pathways modulated during acute infection of swine. Three groups of pigs were inoculated with three different strains of swine HEV to evaluate the possible role of viral determinants in pathogenesis. Liver samples were analyzed by a differential proteomic approach, two-dimensional difference in gel electrophoresis, and 61 modulated proteins were identified by mass spectroscopy. The results obtained show that the three HEV strains replicate similarly in swine and that they modulate several cellular pathways, suggesting that HEV impairs several cellular processes, which can account for the various types of disease expression. Several proteins, such as heterogeneous nuclear ribonucleoprotein K, apolipoprotein E, and prohibitin, known to be involved in other viral life cycles, were upregulated in HEV-infected livers. Some differences were observed between the three strains, suggesting that HEV's genetic variability may induce variations in pathogenesis. This comparative analysis of the liver proteome modulated during infection with three different strains of HEV genotype 3 provides an important basis for further investigations on the factors involved in HEV replication and the mechanism of HEV pathogenesis.Hepatitis E virus (HEV) is responsible for acute hepatitis, with clinical symptoms ranging from asymptomatic to self-limiting acute hepatitis, chronic infection, or fulminant hepatitis. In industrialized countries, HEV is considered an emerging zoonotic disease, with swine being the principal reservoir for human contamination. The viral and cellular factors involved in the replication and/or pathogenesis of HEV are still not fully known. Here we report that several cellular pathways involved in cholesterol and lipid metabolism or cell survival were modulated during HEV infection in the swine model. Moreover, we observed a difference between the different swine strains, suggesting that HEV's genetic variability could play a role in pathogenesis. We also identified some proteins known to be involved in other viral cycles. Our study provides insight into the mechanisms modulated during HEV infection and constitutes a useful reference for future work on HEV pathogenesis and virulence. | 25320303
|
Opposing effects of viral mediated brain expression of apolipoprotein E2 (apoE2) and apoE4 on apoE lipidation and Aβ metabolism in apoE4-targeted replacement mice. Hu, J; Liu, CC; Chen, XF; Zhang, YW; Xu, H; Bu, G Molecular neurodegeneration
10
6
2015
Afficher le résumé
Human apolipoprotein E (apoE) exists in three major isoforms: apoE2, apoE3 and apoE4. In the brain, apoE is produced mostly by astrocytes and transports cholesterol to neurons via apoE receptors. Among the gene alleles encoding the three isoforms, the APOE4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), whereas APOE2 is protective. ApoE4 confers a gain of toxic function, a loss of neuroprotective function or a combination of both in AD pathogenesis. Given that therapeutic impacts of modulating apoE expression may be isoform-dependent, we sought to investigate the relationship between overexpressing apoE isoform and apoE-related functions in apoE-targeted replacement (TR) mice. Specifically, apoE isoform expression driven by the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter was built into an adeno-associated virus serotype 8 (AAV8) vector and injected into the ventricles of postnatal day 2 (P2) apoE3-TR or apoE4-TR mice. Upon confirmation of apoE isoform expression, effects on apoE lipidation and the levels of amyloid-β (Aβ) in the brain were assessed.AAV8-GFAP-apoE isoforms were specifically expressed in astrocytes throughout all brain regions, which led to overall increased apoE levels in the brain. Viral mediated overexpression of apoE4 in the apoE4-TR background increased poorly-lipidated apoE lipoprotein particles and decreased apoE-associated cholesterol in apoE4-TR mice. Conversely, apoE2 overexpression in apoE4-TR mice enhanced apoE lipidation and associated cholesterol. Furthermore, overexpression of apoE4 elevated the levels of endogenous Aβ, whereas apoE2 overexpression trended to lower endogenous Aβ.Overexpression of apoE isoforms induces differential effects in the apoE4-TR background: apoE4 decreases apoE lipidation and enhances Aβ accumulation, whereas apoE2 has the opposite effects. Our findings suggest that increasing apoE2 in APOE4 carriers is a beneficial strategy to treat AD, whereas increasing apoE4 in APOE4 carriers is likely harmful. We have also established novel methods to express apoE isoforms in mouse brain to study apoE-related pathways in AD and related dementia. | 25871773
|
The association of hepatitis C virus glycoproteins with apolipoproteins E and B early in assembly is conserved in lipoviral particles. Boyer, A; Dumans, A; Beaumont, E; Etienne, L; Roingeard, P; Meunier, JC The Journal of biological chemistry
289
18904-13
2014
Afficher le résumé
In patients chronically infected with hepatitis C virus and in the HCV cell culture system (HCVcc), it is known that highly infectious virus particles have low to very low buoyant densities. These low densities have been attributed to the association of HCV with lipoprotein components, which occur during the viral morphogenesis. The resulting hybrid particles are known as lipoviral particles (LVP); however, very little is known about how these particles are created. In our study, we used Huh7.5 cells to investigate the intracellular association between envelope proteins and apolipoproteins B and E (ApoB and ApoE, respectively). In particular, we were interested in the role of this association in initiating LVP morphogenesis. Co-immunoprecipitation assays revealed that ApoB, ApoE, and HCV glycoproteins formed a protein complex early in the HCV lifecycle. Confocal analyses of naïve, E1E2-transduced and HCVcc-infected cells showed that HCV glycoproteins, ApoB and ApoE were found strongly colocalized only in the endoplasmic reticulum. We also found that HCV glycoproteins, ApoB and ApoE were already associated with intracellular infectious viral particles and, furthermore, that the protein complex was conserved in the infectious viral particles present in the supernatant of infected Huh7.5 cells. The association of HCV glycoproteins with ApoE was also evidenced in the HCVpp system, using the non-hepatic HEK293T cell line. We suggest that the complex formed by HCV E1E2, ApoB, and ApoE may initiate lipoviral particle morphogenesis. | 24838241
|
Apolipoprotein E likely contributes to a maturation step of infectious hepatitis C virus particles and interacts with viral envelope glycoproteins. Lee, JY; Acosta, EG; Stoeck, IK; Long, G; Hiet, MS; Mueller, B; Fackler, OT; Kallis, S; Bartenschlager, R Journal of virology
88
12422-37
2014
Afficher le résumé
The assembly of infectious hepatitis C virus (HCV) particles is tightly linked to components of the very-low-density lipoprotein (VLDL) pathway. We and others have shown that apolipoprotein E (ApoE) plays a major role in production of infectious HCV particles. However, the mechanism by which ApoE contributes to virion assembly/release and how it gets associated with the HCV particle is poorly understood. We found that knockdown of ApoE reduces titers of infectious intra- and extracellular HCV but not of the related dengue virus. ApoE depletion also reduced amounts of extracellular HCV core protein without affecting intracellular core amounts. Moreover, we found that ApoE depletion affected neither formation of nucleocapsids nor their envelopment, suggesting that ApoE acts at a late step of assembly, such as particle maturation and infectivity. Importantly, we demonstrate that ApoE interacts with the HCV envelope glycoproteins, most notably E2. This interaction did not require any other viral proteins and depended on the transmembrane domain of E2 that also was required for recruitment of HCV envelope glycoproteins to detergent-resistant membrane fractions. These results suggest that ApoE plays an important role in HCV particle maturation, presumably by direct interaction with viral envelope glycoproteins.The HCV replication cycle is tightly linked to host cell lipid pathways and components. This is best illustrated by the dependency of HCV assembly on lipid droplets and the VLDL component ApoE. Although the role of ApoE for production of infectious HCV particles is well established, it is still poorly understood how ApoE contributes to virion formation and how it gets associated with HCV particles. Here, we provide experimental evidence that ApoE likely is required for an intracellular maturation step of HCV particles. Moreover, we demonstrate that ApoE associates with the viral envelope glycoproteins. This interaction appears to be dispensable for envelopment of virus particles but likely contributes to the quality control of secreted infectious virions. These results shed new light on the exploitation of host cell lipid pathways by HCV and the link of viral particle assembly to the VLDL component ApoE. | 25122793
|
Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. Bukong, TN; Momen-Heravi, F; Kodys, K; Bala, S; Szabo, G PLoS pathogens
10
e1004424
2014
Afficher le résumé
Antibodies targeting receptor-mediated entry of HCV into hepatocytes confer limited therapeutic benefits. Evidence suggests that exosomes can transfer genetic materials between cells; however, their role in HCV infection remains obscure. Here, we show that exosomes isolated from sera of chronic HCV infected patients or supernatants of J6/JFH1-HCV-infected Huh7.5 cells contained HCV RNA. These exosomes could mediate viral receptor-independent transmission of HCV to hepatocytes. Negative sense HCV RNA, indicative of replication competent viral RNA, was present in exosomes of all HCV infected treatment non-responders and some treatment-naïve individuals. Remarkably, HCV RNA was associated with Ago2, HSP90 and miR-122 in exosomes isolated from HCV-infected individuals or HCV-infected Huh7.5 cell supernatants. Exosome-loading with a miR-122 inhibitor, or inhibition of HSP90, vacuolar H+-ATPases, and proton pumps, significantly suppressed exosome-mediated HCV transmission to naïve cells. Our findings provide mechanistic evidence for HCV transmission by blood-derived exosomes and highlight potential therapeutic strategies. | 25275643
|
Subjects harboring presenilin familial Alzheimer's disease mutations exhibit diverse white matter biochemistry alterations. Roher, AE; Maarouf, CL; Malek-Ahmadi, M; Wilson, J; Kokjohn, TA; Daugs, ID; Whiteside, CM; Kalback, WM; Macias, MP; Jacobson, SA; Sabbagh, MN; Ghetti, B; Beach, TG American journal of neurodegenerative disease
2
187-207
2013
Afficher le résumé
Alzheimer's disease (AD) dementia impacts all facets of higher order cognitive function and is characterized by the presence of distinctive pathological lesions in the gray matter (GM). The profound alterations in GM structure and function have fostered the view that AD impacts are primarily a consequence of GM damage. However, the white matter (WM) represents about 50% of the cerebrum and this area of the brain is substantially atrophied and profoundly abnormal in both sporadic AD (SAD) and familial AD (FAD). We examined the WM biochemistry by ELISA and Western blot analyses of key proteins in 10 FAD cases harboring mutations in the presenilin genes PSEN1 and PSEN2 as well as in 4 non-demented control (NDC) individuals and 4 subjects with SAD. The molecules examined were direct substrates of PSEN1 such as Notch-1 and amyloid precursor protein (APP). In addition, apolipoproteins, axonal transport molecules, cytoskeletal and structural proteins, neurotrophic factors and synaptic proteins were examined. PSEN-FAD subjects had, on average, higher amounts of WM amyloid-beta (Aβ) peptides compared to SAD, which may play a role in the devastating dysfunction of the brain. However, the PSEN-FAD mutations we examined did not produce uniform increases in the relative proportions of Aβ42 and exhibited substantial variability in total Aβ levels. These observations suggest that neurodegeneration and dementia do not depend solely on enhanced Aβ42 levels. Our data revealed additional complexities in PSEN-FAD individuals. Some direct substrates of γ-secretase, such as Notch, N-cadherin, Erb-B4 and APP, deviated substantially from the NDC group baseline for some, but not all, mutation types. Proteins that were not direct γ-secretase substrates, but play key structural and functional roles in the WM, likewise exhibited varied concentrations in the distinct PSEN mutation backgrounds. Detailing the diverse biochemical pathology spectrum of PSEN mutations may offer valuable insights into dementia progression and the design of effective therapeutic interventions for both SAD and FAD. | 24093083
|
Molecular Differences and Similarities Between Alzheimer's Disease and the 5XFAD Transgenic Mouse Model of Amyloidosis. Maarouf, CL; Kokjohn, TA; Whiteside, CM; Macias, MP; Kalback, WM; Sabbagh, MN; Beach, TG; Vassar, R; Roher, AE Biochemistry insights
6
1-10
2013
Afficher le résumé
Transgenic (Tg) mouse models of Alzheimer's disease (AD) have been extensively used to study the pathophysiology of this dementia and to test the efficacy of drugs to treat AD. The 5XFAD Tg mouse, which contains two presenilin-1 and three amyloid precursor protein (APP) mutations, was designed to rapidly recapitulate a portion of the pathologic alterations present in human AD. APP and its proteolytic peptides, as well as apolipoprotein E and endogenous mouse tau, were investigated in the 5XFAD mice at 3 months, 6 months, and 9 months. AD and nondemented subjects were used as a frame of reference. APP, amyloid-beta (Aβ) peptides, APP C-terminal fragments (CT99, CT83, AICD), β-site APP-cleaving enzyme, and APLP1 substantially increased with age in the brains of 5XFAD mice. Endogenous mouse tau did not show age-related differences. The rapid synthesis of Aβ and its impact on neuronal loss and neuroinflammation make the 5XFAD mice a desirable paradigm to model AD. | 25210460
|
Novel compstatin family peptides inhibit complement activation by drusen-like deposits in human retinal pigmented epithelial cell cultures. Gorham, RD; Forest, DL; Tamamis, P; López de Victoria, A; Kraszni, M; Kieslich, CA; Banna, CD; Bellows-Peterson, ML; Larive, CK; Floudas, CA; Archontis, G; Johnson, LV; Morikis, D Experimental eye research
116
96-108
2013
Afficher le résumé
We have used a novel human retinal pigmented epithelial (RPE) cell-based model that mimics drusen biogenesis and the pathobiology of age-related macular degeneration to evaluate the efficacy of newly designed peptide inhibitors of the complement system. The peptides belong to the compstatin family and, compared to existing compstatin analogs, have been optimized to promote binding to their target, complement protein C3, and to enhance solubility by improving their polarity/hydrophobicity ratios. Based on analysis of molecular dynamics simulation data of peptide-C3 complexes, novel binding features were designed by introducing intermolecular salt bridge-forming arginines at the N-terminus and at position -1 of N-terminal dipeptide extensions. Our study demonstrates that the RPE cell assay has discriminatory capability for measuring the efficacy and potency of inhibitory peptides in a macular disease environment. | 23954241
|
Brain interstitial oligomeric amyloid β increases with age and is resistant to clearance from brain in a mouse model of Alzheimer's disease. Takeda, S; Hashimoto, T; Roe, AD; Hori, Y; Spires-Jones, TL; Hyman, BT FASEB journal : official publication of the Federation of American Societies for Experimental Biology
27
3239-48
2013
Afficher le résumé
There is a growing body of evidence that soluble oligomeric forms of amyloid β (Aβ) play a critical role in Alzheimer's disease (AD). Despite the importance of soluble Aβ oligomers as a therapeutic target for AD, the dynamic metabolism of these Aβ species in vivo has not been elucidated because of the difficulty in monitoring brain Aβ oligomers in living animals. Here, using a unique large pore-sized membrane microdialysis, we characterized soluble Aβ oligomers in brain interstitial fluid (ISF) of awake, freely moving APP/PS1 transgenic and control WT mice. We could detect high-molecular-weight (HMW) and low-molecular-weight (LMW) Aβ oligomers in the brain ISF of living animals, which increased dramatically in an age-dependent manner (5- to 8-fold increase, 4 vs. 17-18 mo). Notably, HMW Aβ decreased more slowly than other forms of Aβ after acute γ-secretase inhibition [% decrease from the baseline (HMW vs. LMW) was 36.9 vs. 74.1% (Aβ40, Pless than 0.05) and 25.4 vs. 88.0% (Aβ42, Pless than 0.01)], suggesting that HMW Aβ oligomers clear more slowly than other forms from the brain. These data reveal the dynamic metabolism of neurotoxic Aβ oligomers in AD brain and could provide new insights into Aβ-targeted therapies for AD. | 23640054
|
Role of low-density lipoprotein receptor in the hepatitis C virus life cycle. Albecka, Anna, et al. Hepatology, 55: 998-1007 (2012)
2011
Afficher le résumé
Hepatitis C virus (HCV) particles are known to be in complex with lipoproteins. As a result of this interaction, the low-density lipoprotein (LDL) receptor (LDLR) has been proposed as a potential entry factor for HCV; however, its implication in virus entry remains unclear. Here, we reinvestigated the role of the LDLR in the HCV life cycle by comparing virus entry to the mechanism of lipoprotein uptake. A small interfering RNA targeting the LDLR in Huh-7 cells reduced HCV infectivity, confirming that this receptor plays a role in the life cycle of HCV generated in cell culture. However, kinetics of internalization were much faster for lipoproteins than for infectious HCV particles. Furthermore, a decrease in HCV RNA replication was observed by blocking the LDLR with a specific antibody, and this was associated with an increase in the ratio of phosphatidylethanolamine to phosphatidylcholine in host cells. Nevertheless, a soluble form of the LDLR inhibited both HCV entry into the hepatocytes and its binding to the LDLR expressed on Chinese hamster ovary cells, suggesting a direct interaction between the HCV particle and the LDLR. Finally, we showed that modification of HCV particles by lipoprotein lipase (LPL) reduces HCV infectivity and increases HCV binding to LDLR. Importantly, LPL treatment also induced an increase in RNA internalization, suggesting that LDLR, at least in some conditions, leads to nonproductive internalization of HCV. Conclusion: The LDLR is not essential for infectious HCV particle entry, whereas the physiological function of this receptor is important for optimal replication of the HCV genome. | 22121002
|