Lichen Secondary Metabolite, Physciosporin, Inhibits Lung Cancer Cell Motility. Yang, Y; Park, SY; Nguyen, TT; Yu, YH; Nguyen, TV; Sun, EG; Udeni, J; Jeong, MH; Pereira, I; Moon, C; Ha, HH; Kim, KK; Hur, JS; Kim, H PloS one
10
e0137889
2015
Show Abstract
Lichens produce various unique chemicals that can be used for pharmaceutical purposes. To screen for novel lichen secondary metabolites showing inhibitory activity against lung cancer cell motility, we tested acetone extracts of 13 lichen samples collected in Chile. Physciosporin, isolated from Pseudocyphellaria coriacea (Hook f. & Taylor) D.J. Galloway & P. James, was identified as an effective compound and showed significant inhibitory activity in migration and invasion assays against human lung cancer cells. Physciosporin treatment reduced both protein and mRNA levels of N-cadherin with concomitant decreases in the levels of epithelial-mesenchymal transition markers such as snail and twist. Physciosporin also suppressed KITENIN (KAI1 C-terminal interacting tetraspanin)-mediated AP-1 activity in both the absence and presence of epidermal growth factor stimulation. Quantitative real-time PCR analysis showed that the expression of the metastasis suppressor gene, KAI1, was increased while that of the metastasis enhancer gene, KITENIN, was dramatically decreased by physciosporin. Particularly, the activity of 3'-untranslated region of KITENIN was decreased by physciosporin. Moreover, Cdc42 and Rac1 activities were decreased by physciosporin. These results demonstrated that the lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility through novel mechanisms of action. | | | 26371759
|
Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Poitelon, Y; Bogni, S; Matafora, V; Della-Flora Nunes, G; Hurley, E; Ghidinelli, M; Katzenellenbogen, BS; Taveggia, C; Silvestri, N; Bachi, A; Sannino, A; Wrabetz, L; Feltri, ML Nature communications
6
8303
2015
Show Abstract
Cell-cell interactions promote juxtacrine signals in specific subcellular domains, which are difficult to capture in the complexity of the nervous system. For example, contact between axons and Schwann cells triggers signals required for radial sorting and myelination. Failure in this interaction causes dysmyelination and axonal degeneration. Despite its importance, few molecules at the axo-glial surface are known. To identify novel molecules in axo-glial interactions, we modified the 'pseudopodia' sub-fractionation system and isolated the projections that glia extend when they receive juxtacrine signals from axons. By proteomics we identified the signalling networks present at the glial-leading edge, and novel proteins, including members of the Prohibitin family. Glial-specific deletion of Prohibitin-2 in mice impairs axo-glial interactions and myelination. We thus validate a novel method to model morphogenesis and juxtacrine signalling, provide insights into the molecular organization of the axo-glial contact, and identify a novel class of molecules in myelination. | Immunohistochemistry | | 26383514
|
The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Liu, W; Yue, F; Zheng, M; Merlot, A; Bae, DH; Huang, M; Lane, D; Jansson, P; Lui, GY; Richardson, V; Sahni, S; Kalinowski, D; Kovacevic, Z; Richardson, DR Oncotarget
6
8851-74
2015
Show Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that plays a key role in regulating signaling pathways involved in mediating cancer cell invasion and migration, including those derived from prostate, colon, etc. However, the mechanisms and molecular targets through which NDRG1 reduces cancer cell invasion and migration, leading to inhibition of cancer metastasis, are not fully elucidated. In this investigation, using NDRG1 over-expression models in three tumor cell-types (namely, DU145, PC3MM and HT29) and also NDRG1 silencing in DU145 and HT29 cells, we reveal that NDRG1 decreases phosphorylation of a key proto-oncogene, cellular Src (c-Src), at a well-characterized activating site (Tyr416). NDRG1-mediated down-regulation of EGFR expression and activation were responsible for the decreased phosphorylation of c-Src (Tyr416). Indeed, NDRG1 prevented recruitment of c-Src to EGFR and c-Src activation. Moreover, NDRG1 suppressed Rac1 activity by modulating phosphorylation of a c-Src downstream effector, p130Cas, and its association with CrkII, which acts as a "molecular switch" to activate Rac1. NDRG1 also affected another signaling molecule involved in modulating Rac1 signaling, c-Abl, which then inhibited CrkII phosphorylation. Silencing NDRG1 increased cell migration relative to the control and inhibition of c-Src signaling using siRNA, or a pharmacological inhibitor (SU6656), prevented this increase. Hence, the role of NDRG1 in decreasing cell migration is, in part, due to its inhibition of c-Src activation. In addition, novel pharmacological agents, which induce NDRG1 expression and are currently under development as anti-metastatic agents, markedly increase NDRG1 and decrease c-Src activation. This study leads to important insights into the mechanism involved in inhibiting metastasis by NDRG1 and how to target these pathways with novel therapeutics. | | | 25860930
|
Immunohistochemical analysis of the natural killer cell cytotoxicity pathway in human abdominal aortic aneurysms. Hinterseher, I; Schworer, CM; Lillvis, JH; Stahl, E; Erdman, R; Gatalica, Z; Tromp, G; Kuivaniemi, H International journal of molecular sciences
16
11196-212
2015
Show Abstract
Our previous analysis using genome-wide microarray expression data revealed extreme overrepresentation of immune related genes belonging the Natural Killer (NK) Cell Mediated Cytotoxicity pathway (hsa04650) in human abdominal aortic aneurysm (AAA). We followed up the microarray studies by immunohistochemical analyses using antibodies against nine members of the NK pathway (VAV1, VAV3, PLCG1, PLCG2, HCST, TYROBP, PTK2B, TNFA, and GZMB) and aortic tissue samples from AAA repair operations (n = 6) and control aortae (n = 8) from age-, sex- and ethnicity-matched donors from autopsies. The results confirmed the microarray results. Two different members of the NK pathway, HCST and GRZB, which act at different steps in the NK-pathway, were actively transcribed and translated into proteins in the same cells in the AAA tissue demonstrated by double staining. Furthermore, double staining with antibodies against CD68 or CD8 together with HCST, TYROBP, PTK2B or PLCG2 revealed that CD68 and CD8 positive cells expressed proteins of the NK-pathway but were not the only inflammatory cells involved in the NK-pathway in the AAA tissue. The results provide strong evidence that the NK Cell Mediated Cytotoxicity Pathway is activated in human AAA and valuable insight for future studies to dissect the pathogenesis of human AAA. | | | 25993291
|
Impaired cell death and mammary gland involution in the absence of Dock1 and Rac1 signaling. Bagci, H; Laurin, M; Huber, J; Muller, WJ; Côté, JF Cell death & disease
5
e1375
2014
Show Abstract
Throughout life, the tight equilibrium between cell death and the prompt clearance of dead corpses is required to maintain a proper tissue homeostasis and prevent inflammation. Following lactation, mammary gland involution is triggered and results in the death of excessive epithelial cells that are rapidly cleared by phagocytes to ensure that the gland returns to its prepregnant state. Orthologs of Dock1 (dedicator of cytokinesis 1), Elmo and Rac1 (ras-related C3 botulinum toxin substrate 1) in Caenorhabditis elegans are part of a signaling module in phagocytes that is linking apoptotic cell recognition to cytoskeletal reorganization required for engulfment. In mammals, Elmo1 was shown to interact with the phosphatidylserine receptor Bai1 and relay signals to promote phagocytosis of apoptotic cells. Still, the role of the RacGEF Dock1 in the clearance of dying cells in mammals was never directly addressed. We generated two mouse models with conditional inactivation of Dock1 and Rac1 and revealed that the expression of these genes is not essential in the mammary gland during puberty, pregnancy and lactation. We induced mammary gland involution in these mice to investigate the role of Dock1/Rac1 signaling in the engulfment of cell corpses. Unpredictably, activation of Stat3 (signal transducer and activator of transcription 3), a key regulator of mammary gland involution, was impaired in the absence of Rac1 and Dock1 expression. Likewise, failure to activate properly Stat3 was coinciding with a significant delay in the initiation and progression of mammary gland involution in mutant animals. By using an in vitro phagocytosis assay, we observed that Dock1 and Rac1 are essential to mediate engulfment in epithelial phagocytes. In vivo, cell corpses accumulated at late time points of involution in Dock1 and Rac1 mutant mammary glands. Overall, our study demonstrated an unsuspected role for Dock1/Rac1 signaling in the initiation of mammary gland involution, and also suggested a role for this pathway in the clearance of dead cells by epithelial phagocytes. | | | 25118935
|
Hax-1 is required for Rac1-Cortactin interaction and ovarian carcinoma cell migration. Gomathinayagam, R; Muralidharan, J; Ha, JH; Varadarajalu, L; Dhanasekaran, DN Genes & cancer
5
84-99
2014
Show Abstract
Hax-1 is a multifunctional protein, which is involved in diverse cellular signaling pathways including tumor cell survival and migration. We have shown previously that cell migration stimulated by the oncogenic G protein, G13, requires Hax-1 for the formation of a functional complex involving Gα13, Rac1, and cortactin. However, the role of Hax-1 in cancer cell migration or its role in Rac1-cortactin complex formation, which is known to be required for such migration remains to be characterized. Results focused on resolving the role of Hax-1 in ovarian cancer pathophysiology indicate that Hax-1 is overexpressed in ovarian cancer cells and the silencing of Hax-1 inhibits lysophosphatidic acid (LPA)- or fetal bovine serum-stimulated migration of these cells. In addition, silencing of Hax-1 greatly reduces Rac1-cortactin interaction and their colocalization in SKOV3 cells. Mapping the structural domains of Hax-1 indicates that it interacts with cortactin via domains spanning amino acids 1 to 56 (Hax-D1) and amino acids 113 to 168 (Hax-D3). Much weaker interaction with cortactin was also observed with the region of Hax-1 spanning amino acids 169 - 224 (Hax-D4). Similar mapping of Hax-1 domains involved in Rac1 interaction indicates that it associates with Rac1 via two primary domains spanning amino acids 57 to 112 (Hax-D2) and 169 to 224 (Hax-D4). Furthermore, expression of either of these domains inhibits LPA-mediated migration of SKOV3 cells, possibly through their ability to exert competitive inhibition on endogenous Hax-1-Rac1 and/or Hax-1-cortactin interaction. More significantly, expression of Hax-D4 drastically reduces Rac1-cortactin colocalization in SKOV3 cells along with an attenuation of LPA-stimulated migration. Thus our results presented here describe for the first time that Hax-1 interaction is required for the association between Rac1 and cortactin and that these multiple interactions are required for the LPA-stimulated migration of SKOV3 ovarian cancer cells. | | | 25053987
|
Downregulation of microRNA-100 enhances the ICMT-Rac1 signaling and promotes metastasis of hepatocellular carcinoma cells. Zhou, HC; Fang, JH; Luo, X; Zhang, L; Yang, J; Zhang, C; Zhuang, SM Oncotarget
5
12177-88
2014
Show Abstract
Metastasis is responsible for rapid recurrence of hepatocellular carcinoma (HCC) and poor survival of HCC patients. Here we showed that miR-100 downregulation in HCC tissues was significantly associated with venous invasion, advanced TNM stage, tumor nodule without complete capsule, poorer cell differentiation, and shorter recurrence-free survival. Both gain- and loss-of-function studies showed that miR-100 dramatically suppressed the ability of HCC cells to migrate and to invade through Matrigel in vitro. Analyses using mouse orthotopic xenograft model further revealed that xenografts of miR-100-stable-expressing HCC cells displayed a significant reduction in pulmonary metastasis, compared with control group. Subsequent investigations revealed that miR-100 directly inhibited the expression of isoprenylcysteine carboxyl methyltransferase (ICMT) and ras-related C3 botulinum toxin substrate 1 (Rac1) by binding to their 3'-UTRs, and in turn suppressed lamellipodia formation and matrix metallopeptidase 2 (MMP2) activation. Furthermore, knockdown of ICMT and Rac1 phenocopied the anti-metastasis effect of miR-100, whereas overexpression of the constitutively active Rac1 (Q61L) antagonized the function of miR-100. Taken together, miR-100 represses metastasis of HCC cells by abrogating the ICMT-Rac1 signaling. Downregulation of miR-100 contributes to HCC metastasis and the restoration of miR-100 is a potential strategy for cancer therapy. | Western Blotting | Mouse | 25361001
|
EZH2 regulates cofilin activity and colon cancer cell migration by targeting ITGA2 gene. Ferraro, A; Boni, T; Pintzas, A PloS one
9
e115276
2014
Show Abstract
Reorganization of cytoskeleton via actin remodeling is a basic step of cell locomotion. Although cell migration of normal and cancer cells can be stimulated by a variety of intra- and extra-cellular factors, all paths ultimate on the regulation of cofilin activity. Cofilin is a small actin-binding protein able to bind both forms of actin, globular and filament, and is regulated by phosphorylation at Serine 3. Following phosphorylation at serine 3 cofilin is inactive, therefore cannot bind actin molecules and cytoskeleton remodeling is impaired. The histone methyltransferase EZH2 is frequently over expressed in many tumour types including colorectal cancer (CRC). EZH2 over activity, which results in epigenetic gene-silencing, has been associated with many tumour properties including invasion, angiogenesis and metastasis but little is known about the underneath molecular mechanisms. Herein, we report that EZH2 is able to control cofilin activity and consequently cell locomotion of CRC cell lines through a non-conventional novel axis that involves integrin signaling. Indeed, we show how genetic and pharmacological inhibition (DZNep and GSK343) of EZH2 function produces hyper phosphorylation of cofilin and reduces cell migration. We previously demonstrated by chromatin immuno-precipitation that Integrin alpha 2 (ITGα2) expression is regulated by EZH2. In the present study we provide evidence that in EZH2-silenced cells the signaling activity of the de-repressed ITGα2 is able to increase cofilin phosphorylation, which in turn reduces cell migration. This study also proposes novel mechanisms that might provide new anti-metastatic strategies for CRC treatment based on the inhibition of the epigenetic factor EZH2 and/or its target gene. | Western Blotting | | 25549357
|
Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. Ishii, H; Saitoh, M; Sakamoto, K; Kondo, T; Katoh, R; Tanaka, S; Motizuki, M; Masuyama, K; Miyazawa, K The Journal of biological chemistry
289
27386-99
2014
Show Abstract
ESRP1 (epithelial splicing regulatory protein 1) and ESRP2 regulate alternative splicing events associated with epithelial phenotypes of cells, and both are down-regulated during the epithelial-mesenchymal transition. However, little is known about their expression and functions during carcinogenesis. In this study, we found that expression of both ESRP1 and ESRP2 is plastic: during oral squamous cell carcinogenesis, these proteins are up-regulated relative to their levels in normal epithelium but down-regulated in invasive fronts. Importantly, ESRP1 and ESRP2 are re-expressed in the lymph nodes, where carcinoma cells metastasize and colonize. In head and neck carcinoma cell lines, ESRP1 and ESRP2 suppress cancer cell motility through distinct mechanisms: knockdown of ESRP1 affects the dynamics of the actin cytoskeleton through induction of Rac1b, whereas knockdown of ESRP2 attenuates cell-cell adhesion through increased expression of epithelial-mesenchymal transition-associated transcription factors. Down-regulation of ESRP1 and ESRP2 is thus closely associated with a motile phenotype of cancer cells. | | | 25143390
|
Interactome analysis of AMP-activated protein kinase (AMPK)-α1 and -β1 in INS-1 pancreatic beta-cells by affinity purification-mass spectrometry. Moon, S; Han, D; Kim, Y; Jin, J; Ho, WK; Kim, Y Scientific reports
4
4376
2014
Show Abstract
The heterotrimeric enzyme AMP-activated protein kinase (AMPK) is a major metabolic factor that regulates the homeostasis of cellular energy. In particular, AMPK mediates the insulin resistance that is associated with type 2 diabetes. Generally, cellular processes require tight regulation of protein kinases, which is effected through their formation of complex with other proteins and substrates. Despite their critical function in regulation and pathogenesis, there are limited data on the interaction of protein kinases. To identify proteins that interact with AMPK, we performed large-scale affinity purification (AP)-mass spectrometry (MS) of the AMPK-α1 and -β1 subunits. Through a comprehensive analysis, using a combination of immunoprecipitaion and ion trap mass spectrometry, we identified 381 unique proteins in the AMPKα/β interactomes: 325 partners of AMPK-α1 and 243 for AMPK-β1. Further, we identified 196 novel protein-protein interactions with AMPK-α1 and AMPK-β1. Notably, in our bioinformatics analysis, the novel interaction partners mediated functions that are related to the regulation of actin organization. Specifically, several such proteins were linked to pancreatic beta-cell functions, including glucose-stimulated insulin secretion, beta-cell development, beta-cell differentiation, and cell-cell communication. | Western Blotting | | 24625528
|