Suppression of tumor growth in mice by rationally designed pseudopeptide inhibitors of fibroblast activation protein and prolyl oligopeptidase. Jackson, KW; Christiansen, VJ; Yadav, VR; Silasi-Mansat, R; Lupu, F; Awasthi, V; Zhang, RR; McKee, PA Neoplasia (New York, N.Y.)
17
43-54
2015
Show Abstract
Tumor microenvironments (TMEs) are composed of cancer cells, fibroblasts, extracellular matrix, microvessels, and endothelial cells. Two prolyl endopeptidases, fibroblast activation protein (FAP) and prolyl oligopeptidase (POP), are commonly overexpressed by epithelial-derived malignancies, with the specificity of FAP expression by cancer stromal fibroblasts suggesting FAP as a possible therapeutic target. Despite overexpression in most cancers and having a role in angiogenesis, inhibition of POP activity has received little attention as an approach to quench tumor growth. We developed two specific and highly effective pseudopeptide inhibitors, M83, which inhibits FAP and POP proteinase activities, and J94, which inhibits only POP. Both suppressed human colon cancer xenograft growth greater than 90% in mice. By immunohistochemical stains, M83- and J94-treated tumors had fewer microvessels, and apoptotic areas were apparent in both. In response to M83, but not J94, disordered collagen accumulations were observed. Neither M83- nor J94-treated mice manifested changes in behavior, weight, or gastrointestinal function. Tumor growth suppression was more extensive than noted with recently reported efforts by others to inhibit FAP proteinase function or reduce FAP expression. Diminished angiogenesis and the accompanying profound reduction in tumor growth suggest that inhibition of either FAP or POP may offer new therapeutic approaches that directly target TMEs. | 25622898
|
Chromatin collapse during caspase-dependent apoptotic cell death requires DNA fragmentation factor, 40-kDa subunit-/caspase-activated deoxyribonuclease-mediated 3'-OH single-strand DNA breaks. Iglesias-Guimarais, V; Gil-Guiñon, E; Sánchez-Osuna, M; Casanelles, E; García-Belinchón, M; Comella, JX; Yuste, VJ The Journal of biological chemistry
288
9200-15
2013
Show Abstract
Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD(-/-) cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3'-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3'-OH ends in single-strand rather than double-strand DNA nicks/breaks. | 23430749
|
Involvement of autophagy in the pharmacological effects of the mTOR inhibitor everolimus in acute kidney injury. Shunsaku Nakagawa,Kumiko Nishihara,Ken-Ichi Inui,Satohiro Masuda European journal of pharmacology
696
2012
Show Abstract
Inhibitors of mammalian target of rapamycin (mTOR) have immunosuppressive and anti-cancer effects, but their effects on the progression of kidney disease are not fully understood. Using cells from normal kidney epithelial cell lines, we found that the antiproliferative effects of mTOR inhibitor everolimus accompanied the accumulation of a marker for cellular autophagic activity, the phosphatidylethanolamine-conjugated form of microtubule-associated protein 1 light chain 3 (LC3-II) in cells. We also showed that the primary autophagy factor UNC-51-like kinase 1 was involved in the antiproliferative effects of everolimus. Levels of LC3-II decreased in the kidneys of rats treated with ischemia-reperfusion or cisplatin; however, renal LC3-II levels increased after administration of everolimus to rats subjected to ischemia-reperfusion or cisplatin treatment. Simultaneously, increased signals for kidney injury molecule-1 and single-stranded DNA and decreased signals for Ki-67 in the proximal tubules were observed after treatment with everolimus, indicating that everolimus diminished renal function after acute tubular injury. We also found leakage of LC3 protein into rat urine after treatment with everolimus, and urinary LC3 protein was successfully measured between 0.1 and 500ng/mL by using an enzyme-linked immunosorbent assay. Urinary LC3 levels were increased after administration of everolimus to rats subjected to ischemia-reperfusion or cisplatin treatment, suggesting that renal LC3-II and urinary LC3 protein are new biomarkers for autophagy in acute kidney injury. Taken together, our results demonstrated that the induction of autophagy by everolimus aggravates tubular dysfunction during recovery from kidney injury. | 23022334
|
Apnea produces excitotoxic hippocampal synapses and neuronal apoptosis. Simon J Fung,Mingchu Xi,Jianhua Zhang,Sharon Sampogna,Michael H Chase Experimental neurology
238
2012
Show Abstract
Obstructive sleep apnea (OSA) results in the degeneration of neurons in the hippocampus that eventuates in neurocognitive deficits. We were therefore interested in determining the effects of apnea on monosynaptic excitatory processes in a hippocampal pathway (cornu ammonis 3-cornu ammonis 1, CA3-CA1) that has been shown to mediate the processing of cognitive information. In addition, to substantiate an anatomical basis for the cognitive dysfunction that occurs in OSA patients, we examined the effects of apnea with respect to neurodegenerative changes (apoptosis) in the same hippocampal pathway. In order to determine the effects of apnea, an automated system for the generation and analysis of single and recurrent periods of apnea was developed. Utilizing this system, the field excitatory postsynaptic potential (fEPSP) generated by pyramidal neurons in the CA1 region of the hippocampus was monitored in α-chloralose anesthetized rats following stimulation of glutamatergic afferents in the CA3 region. A stimulus-response (input-output) curve for CA3-CA1 synaptic activity was determined. In addition, a paired-pulse paradigm was employed to evaluate, electrophysiologically, the presynaptic release of glutamate. Changes in the synaptic efficacy were assessed following single episodes of apnea induced by ventilatory arrest (60 to 80s duration, mean=72s; mean oxygen desaturation was 53% of normoxia level). Apnea resulted in a significant potentiation of the amplitude (mean=126%) and slope (mean=117%) of the baseline CA1 fEPSP. This increase in the fEPSP was accompanied by a significant decrease in the amplitude (71%) and slope (81%) of normalized paired-pulse facilitation (PPF) ratios. Since the potentiation of the fEPSP is inversely proportional to changes in PPF ratio, the potentiated fEPSP accompanied by the reduced PPF reveals that apnea produces an abnormal increase in the preterminal release of glutamate that results in the over-activation (and calcium overloading) of hippocampal CA1 neurons. Thus, we conclude that individual episodes of apnea result in the development of excitotoxic processes in the hippocampal CA3-CA1 pathway that is critically involved in the processing of cognitive information. Morphologically, the deleterious effect of recurrent apnea was substantiated by the finding of apoptosis in CA1 neurons of apneic (but not normoxic) animals. | 22921462
|
Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E. C Andrieu,D Taieb,V Baylot,S Ettinger,P Soubeyran,A De-Thonel,C Nelson,C Garrido,A So,L Fazli,F Bladou,M Gleave,J L Iovanna,P Rocchi Oncogene
29
2010
Show Abstract
One strategy to improve therapies in advanced prostate cancer (PC) involves targeting genes that are activated by androgen withdrawal to delay the emergence of the androgen-independent (AI) phenotype. Heat shock protein 27 (Hsp27) expression becomes highly upregulated in PC cells after androgen withdrawal or chemotherapy, in which it functions as a cytoprotective chaperone to confer broad-spectrum treatment resistance. The purpose of this study is to elucidate anti-apoptotic pathways regulated by Hsp27 that are activated during PC progression. Using two-hybrid experiment, we found that Hsp27 was having a major role in the protein translational initiation process. Furthermore, using complementary DNA (cDNA) microarray analysis, 4E binding protein 1 was identified as being proportionately and highly regulated by Hsp27. These data led us to analyze the protein synthesis initiation pathway, which is a prerequisite for cell growth and proliferation. Using northern and western blot analysis, we found that Hsp27 downregulation decreased eukaryotic translation initiation factor 4E (eIF4E) expression at the protein, but not mRNA, level. The cytoprotection afforded by Hsp27 overexpression was attenuated by eIF4E knockdown using specific eIF4E short interfering RNA (siRNA). Co-immunoprecipitation and co-immunofluorescence confirmed that Hsp27 colocalizes and interacts directly with eIF4E. Hsp27-eIF4E interaction decreases eIF4E ubiquitination and proteasomal degradation. By chaperoning eIF4E, Hsp27 seems to protect the protein synthesis initiation process to enhance cell survival during cell stress induced by castration or chemotherapy. Forced overexpression of eIF4E induces resistance to androgen-withdrawal and paclitaxel treatment in the prostate LNCaP cells in vitro. These findings identify Hsp27 as a modulator of eIF4E and establish a potential mechanism for the eIF4E-regulated apoptosis after androgen ablation and chemotherapy. Targeting Hsp27-eIF4E interaction may serve as a therapeutic target in advanced PC. | 20101233
|
Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. Palma Rocchi, Paul Jugpal, Alan So, Shannon Sinneman, Susan Ettinger, Ladan Fazli, Colleen Nelson, Martin Gleave BJU international
98
1082-9
2006
Show Abstract
OBJECTIVES: To evaluate synthetic small interference RNA (siRNA) compounds targeting heat-shock protein 27 (Hsp27) as an alternative approach to Hsp27 'knockdown' in prostate cancer cells, as Hsp27 expression is highly up-regulated in prostate cancer cells after androgen withdrawal or chemotherapy, to become uniformly highly expressed in androgen-independent (AI) prostate cancer. MATERIALS AND METHODS: We recently showed that targeting Hsp27 by a 2'-methoxyethyl modified phosphorothioate antisense oligonucleotide, OGX-427, inhibits Hsp27 expression and enhances hormone- and chemotherapy in prostate cancer xenograft models. In the present study, a 'gene walk' screening different siRNAs was initially used in PC-3 and LNCaP cells to determine the most potent sequence to down-regulate Hsp27 mRNA and protein levels. The effects of Hsp27 silencing on in vitro growth rates were studied by tetrazolium-blue and crystal violet assays. Apoptosis was determined by single-stranded DNA nuclear and cleaved caspase-3 immunostaining, as well as flow cytometry. Spotted microarrays with 14,000 human oligonucleotides were used to examine changes in gene expression. RESULTS: Low concentrations of 1 nm siRNA decreased Hsp27 mRNA levels by 19-fold and suppressed protein expression to undetectable levels. Silencing of Hsp27 in prostate cancer cells by siRNA # 2 increased apoptotic rates 2.4-4 fold and caused 40-76% inhibition of cell growth in LNCaP and PC-3 cells. Characteristic cleavage of caspase-3 occurred after treatment with Hsp27 siRNA (1 nm). cDNA microarray analysis from LNCaP and PC-3 cell lines revealed differential gene expression profiles after Hsp27 down-regulation that could be used to identify various survival pathways involved in androgen-dependent and AI growth. CONCLUSIONS: These findings illustrate the potential utility of Hsp27-silencing therapy and highlight Hsp27 siRNA strategies as a novel and highly effective tool, with the potential for future targeted therapy in enhancing the efficacy of chemotherapy in advanced prostate cancer. | 16879439
|
Method of specific detection of apoptosis using formamide-induced DNA denaturation assay. Ito, Y; Shibata, MA; Kusakabe, K; Otsuki, Y The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society
54
683-92
2006
Show Abstract
We compared the reliability between apoptosis detection methods, namely, the terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) method and formamide-induced DNA denaturation assay using a monoclonal antibody (MAb) to single-stranded DNA (ssDNA) (formamide-MAb assay). Reaction targets in these methods are different: the TUNEL method recognizes free 3'-OH DNA ends, whereas the formamide-MAb assay detects ssDNA itself (25-30 bp). We found that the formamide-MAb assay immunohistochemically detected apoptotic cells, whereas the TUNEL method detected apoptotic cells as well as mitotic and necrotic cells. The TUNEL method recognized not only 3'-OH DNA ends cleaved by DNase during apoptosis but also constitutive physiological nicking that occurs in DNA duplication and histone posttranslational modifications during mitosis and random DNA breaks during necrotic execution. By electron microscopy, the mean labeling density (the number of 3'-OH DNA ends/nuclear area) obtained by the TUNEL method was determined to be consistently higher than that (the number of ssDNAs/nuclear area) obtained by the formamide-MAb assay. On the basis of these findings, we conclude that the formamide-MAb assay was more specific than the TUNEL method for the detection of apoptotic cells using electron microscopy; however, the labeling intensity of the formamide-MAb assay was slightly weaker than that of the TUNEL method. | 16714424
|
Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Rocchi, P; Beraldi, E; Ettinger, S; Fazli, L; Vessella, RL; Nelson, C; Gleave, M Cancer research
65
11083-93
2005
Show Abstract
One strategy to improve therapies in prostate cancer involves targeting cytoprotective genes activated by androgen withdrawal to delay the emergence of the androgen-independent (AI) phenotype. The objectives of this study were to define changes in Hsp27 levels after androgen ablation and to evaluate the functional relevance of these changes in AI progression. Using a tissue microarray of 232 specimens of hormone-naïve and post-hormone ablation-treated prostate cancer, we found that Hsp27 levels increase after androgen ablation to become highly expressed (greater than 4-fold, P less than or = 0.01) in AI tumors. Hsp27 overexpression rendered LNCaP cells highly resistant to androgen withdrawal both in vitro and in vivo. Tumor volume and serum prostate-specific antigen levels increased 4.3- and 10-fold faster after castration when Hsp27 was overexpressed. Treatment of LNCaP tumor cells in vitro with Hsp27 antisense oligonucleotides (ASO) or short-interfering RNA suppressed Hsp27 levels in a dose-dependent and sequence-specific manner increased the apoptotic sub-G0-G1 fraction and caspase-3 cleavage greater than 2-fold, as well as decreased signal transducers and activators of transcription 3 (Stat3) levels and its downstream genes, c-fos and sPLA-2. The cytoprotection afforded by Hsp27 overexpression was attenuated by Stat3 knockdown using specific Stat3 ASO. Coimmunoprecipitation and immunofluorescence confirmed that Hsp27 interacts with Stat3 and that Stat3 levels correlated directly with Hsp27 levels. Hsp27 ASO treatment in athymic mice bearing LNCaP tumors significantly delayed LNCaP tumor growth after castration, decreasing mean tumor volume and serum prostate-specific antigen levels by 57% and 69%, respectively. These findings identify Hsp27 as a modulator of Stat3-regulated apoptosis after androgen ablation and as a potential therapeutic target in advanced prostate cancer. | 16322258
|
Fluorosis: a new model and new insights. J D Bartlett, S E Dwyer, E Beniash, Z Skobe, T L Payne-Ferreira, J D Bartlett, S E Dwyer, E Beniash, Z Skobe, T L Payne-Ferreira Journal of dental research
84
832-6
2005
Show Abstract
Fluoride is an effective agent for the prevention of dental caries. However, the mechanism of how excessive fluoride exposure causes fluorosis remains uncertain. Zebrafish (Danio rerio) exhibit periodic tooth replacement throughout their lives, thereby providing continuous access to teeth at developmental stages susceptible to fluoride exposure. Zebrafish teeth do not contain true enamel, but consist of a hard enameloid surface. Therefore, we asked whether zebrafish could be used as a model organism for the study of dental fluorosis. Scanning electron microscopy of fluoride-treated teeth demonstrated that the enameloid was pitted and rough, and FTIR analysis demonstrated that the teeth also contained a significantly higher organic content when compared with untreated controls. Furthermore, we demonstrate for the first time that decreased expression of an important signaling molecule (Alk8) in tooth development may contribute to the observed fluorotic phenotype, and that increased cell apoptosis may also play a role in the mechanism of fluorosis. | 16109993
|
Rapid in vivo Taxotere quantitative chemosensitivity response by 4.23 Tesla sodium MRI and histo-immunostaining features in N-Methyl-N-Nitrosourea induced breast tumors in rats. Sharma, R; Kline, RP; Wu, EX; Katz, JK Cancer cell international
5
26
2005
Show Abstract
Sodium weighted images can indicate sodium signal intensities from different features in the tumor before and 24 hours following administration of Taxotere.To evaluate the association of in vivo intracellular sodium magnetic resonance image intensities with immuno-biomarkers and histopathological features to monitor the early tumor response to Taxotere chemotherapy in Methyl-Nitroso-Urea induced rat xenograft breast tumors.Methyl-Nitroso-Urea (MNU) induced rat xenograft breast tumors were imaged for sodium MRI and compared with tumor histology, immunostaining after 24 hours chemotherapy.Sodium MRI signal intensities represented sodium concentrations. Excised tumor histological sections showed different in vitro histological end points i.e. single strand DNA content of cell nuclei during cell cycle (G1/S-G2/M), distinct S or M histograms (Feulgen labeling to nuclear DNA content by CAS 200), mitotic figures and apoptosis at different locations of breast tumors. Necrosis and cystic fluid appeared gray on intracellular (IC) sodium images while apoptosis rich regions appeared brighter on IC sodium images. After 24 hours Taxotere-treated tumors showed lower 'IC/EC ratio' of viable cells (65-76%) with higher mitotic index; apoptotic tumor cells at high risk due to cytotoxicity (greater than 70% with high apoptotic index); reduced proliferation index (270 vs 120 per high power field) associated with enhanced IC sodium in vivo MR image intensities and decreased tumor size (3%; p less than 0.001; n = 16) than that of pre-treated tumors. IC-Na MR signal intensities possibly indicated Taxotere chemosensitivity response in vivo associated with apoptosis and different pre-malignant features within 24 hours of exposure of cancer cells to anti-neoplastic Taxotere drug.Sodium MRI imaging may be used as in vivo rapid drug monitoring method to evaluate Taxotere chemosensitivity response associated with neoplasia, apoptosis and tumor histology features. | 16078994
|