Millipore Sigma Vibrant Logo
Atención: Nos hemos mudado. Los productos Merck Millipore ya no pueden adquirirse en MerckMillipore.comMás información
 

Air Gap


28 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (14)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Consequences of developmental exposure to concentrated ambient ultrafine particle air pollution combined with the adult paraquat and maneb model of the Parkinson's diseas ... 24486957

    Current evidence suggests suceptibility of both the substantia nigra and striatum to exposure to components of air pollution. Further, air pollution has been associated with increased risk of PD diagnsosis in humans or PD-like pathology in animals. This study examined whether exposure of mice to concentrated ambient ultrafine particles (CAPS; less than 100nm diameter) during the first two weeks of life would alter susceptibility to induction of the Parkinson's disease phenyotype (PDP) in a pesticide-based paraquat and maneb (PQ+MB) model during adulthood utilizing i.p. injections of 10mg/kg PQ and 30mg/kg MB 2× per week for 6 weeks. Evidence of CAPS-induced enhancement of the PQ+MB PDP was limited primarily to delayed recovery of locomotor activity 24 post-injection of PQ+MB that could be related to alterations in striatal GABA inhibitory function. Absence of more extensive interactions might also reflect the finding that CAPS and PQ+MB appeared to differentially target the nigrostriatal dopamine and amino acid systems, with CAPS impacting striatum and PQ+MB impacting dopamine-glutamate function in midbrain; both CAPS and PQ+MB elevated glutamate levels in these specific regions, consistent with potential excitotoxicity. These findings demonstrate the ability of postnatal CAPS to produce locomotor dysfunction and dopaminergic and glutamateric changes, independent of PQ+MB, in brain regions involved in the PDP.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB152
    Nombre del producto:
    Anti-Tyrosine Hydroxylase Antibody
  • Gap junctional conductance between pairs of ventricular myocytes is modulated synergistically by H+ and Ca++. 2115574

    Gap junctional conductance (gj) between cardiac ventricular myocyte pairs is rapidly, substantially, and reversibly reduced by sarcoplasmic acidification with CO2 when extracellular calcium activity is near physiological levels (1.0 mM CaCl2 added; 470 microM Ca++). Intracellular calcium concentration (Cai), measured by fura-2 fluorescence in cell suspensions, was 148 +/- 39 nM (+/- SEM, n = 6) and intracellular pH (pHi), measured with intracellular ion-selective microelectrodes, was 7.05 +/- 0.02 (n = 5) in cell pair preparations bathed in medium equilibrated with air. Cai increased to 515 +/- 12 nM (n = 6) and pHi decreased to 5.9-6.0 in medium equilibrated with 100% CO2. In air-equilibrated low-calcium medium (no added CaCl2; 2-5 microM Ca++), Cai was 61 +/- 9 nM (n = 13) at pHi 7.1. Cai increased to only 243 +/- 42 nM (n = 9) at pHi 6.0 in CO2-equilibrated low-calcium medium. Junctional conductance, in most cell pairs, was not substantially reduced by acidification to pHi 5.9-6.0 in low-calcium medium. Cell pairs could still be electrically uncoupled reversibly by the addition of 100 microM octanol, an agent which does not significantly affect Cai. In low-calcium low-sodium medium (choline substitution for all but 13 mM sodium), acidification with CO2 increased Cai to 425 +/- 35 nM (n = 11) at pHi 5.9-6.0 and gj was reduced to near zero. Junctional conductance could also be reduced to near zero at pHi 6.0 in low-calcium medium containing the calcium ionophore, A23187. The addition of the calcium ionophore did not uncouple cell pairs in the absence of acidification. In contrast, acidification did not substantially reduce gj when intracellular calcium was low. Increasing intracellular calcium did not appreciably reduce gj at pHi 7.0. These results suggest that, although other factors may play a role, H+ and Ca++ act synergistically to decrease gj.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-1061
    Nombre del producto:
    Anti-CARD11 Antibody
  • SAP18 promotes Krüppel-dependent transcriptional repression by enhancer-specific histone deacetylation. 19049982

    Body pattern formation during early embryogenesis of Drosophila melanogaster relies on a zygotic cascade of spatially restricted transcription factor activities. The gap gene Krüppel ranks at the top level of this cascade. It encodes a C2H2 zinc finger protein that interacts directly with cis-acting stripe enhancer elements of pair rule genes, such as even skipped and hairy, at the next level of the gene hierarchy. Krüppel mediates their transcriptional repression by direct association with the corepressor Drosophila C terminus-binding protein (dCtBP). However, for some Krüppel target genes, deletion of the dCtBP-binding sites does not abolish repression, implying a dCtBP-independent mode of repression. We identified Krüppel-binding proteins by mass spectrometry and found that SAP18 can both associate with Krüppel and support Krüppel-dependent repression. Genetic interaction studies combined with pharmacological and biochemical approaches suggest a site-specific mechanism of Krüppel-dependent gene silencing. The results suggest that Krüppel tethers the SAP18 bound histone deacetylase complex 1 at distinct enhancer elements, which causes repression via histone H3 deacetylation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-146
    Nombre del producto:
    Anti-Histone H2A (acidic patch) Antibody
  • Viral vector tropism for supporting cells in the developing murine cochlea. 21530627

    Gene-based therapeutics are being developed as novel treatments for genetic hearing loss. One roadblock to effective gene therapy is the identification of vectors which will safely deliver therapeutics to targeted cells. The cellular heterogeneity that exists within the cochlea makes viral tropism a vital consideration for effective inner ear gene therapy. There are compelling reasons to identify a viral vector with tropism for organ of Corti supporting cells. Supporting cells are the primary expression site of connexin 26 gap junction proteins that are mutated in the most common form of congenital genetic deafness (DFNB1). Supporting cells are also primary targets for inducing hair cell regeneration. Since many genetic forms of deafness are congenital it is necessary to administer gene transfer-based therapeutics prior to the onset of significant hearing loss. We have used transuterine microinjection of the fetal murine otocyst to investigate viral tropism in the developing inner ear. For the first time we have characterized viral tropism for supporting cells following in utero delivery to their progenitors. We report the inner ear tropism and potential ototoxicity of three previously untested vectors: early-generation adenovirus (Ad5.CMV.GFP), advanced-generation adenovirus (Adf.11D) and bovine adeno-associated virus (BAAV.CMV.GFP). Adenovirus showed robust tropism for organ of Corti supporting cells throughout the cochlea but induced increased ABR thresholds indicating ototoxicity. BAAV also showed tropism for organ of Corti supporting cells, with preferential transduction toward the cochlear apex. Additionally, BAAV readily transduced spiral ganglion neurons. Importantly, the BAAV-injected ears exhibited normal hearing at 5 weeks of age when compared to non-injected ears. Our results support the use of BAAV for safe and efficient targeting of supporting cell progenitors in the developing murine inner ear.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB3080
    Nombre del producto:
    Anti-Green Fluorescent Protein Antibody
  • Relationship between noise-induced hearing-loss, persistent tinnitus and growth-associated protein-43 expression in the rat cochlear nucleus: does synaptic plasticity in ... 21821100

    Aberrant, lesion-induced neuroplastic changes in the auditory pathway are believed to give rise to the phantom sound of tinnitus. Noise-induced cochlear damage can induce extensive fiber growth and synaptogenesis in the cochlear nucleus, but it is currently unclear if these changes are linked to tinnitus. To address this issue, we unilaterally exposed nine rats to narrow-band noise centered at 12 kHz at 126 dB sound pressure level (SPL) for 2 h and sacrificed them 10 weeks later for evaluation of synaptic plasticity (growth-associated protein 43 [GAP-43] expression) in the cochlear nucleus. Noise-exposed rats along with three age-matched controls were screened for tinnitus-like behavior with gap prepulse inhibition of the acoustic startle (GPIAS) before, 1-10 days after, and 8-10 weeks after the noise exposure. All nine noise-exposed rats showed similar patterns of severe hair cell loss at high- and mid-frequency regions in the exposed ear. Eight of the nine showed strong up-regulation of GAP-43 in auditory nerve fibers and pronounced shrinkage of the ventral cochlear nucleus (VCN) on the noise-exposed side, and strong up-regulation of GAP-43 in the medial ventral VCN, but not in the lateral VCN or the dorsal cochlear nucleus. GAP-43 up-regulation in VCN was significantly greater in Noise-No-Tinnitus rats than in Noise-Tinnitus rats. One Noise-No-Tinnitus rat showed no up-regulation of GAP-43 in auditory nerve fibers and only little VCN shrinkage, suggesting that auditory nerve degeneration plays a role in tinnitus generation. Our results suggest that noise-induced tinnitus is suppressed by strong up-regulation of GAP-43 in the medial VCN. GAP-43 up-regulation most likely originates from medial olivocochlear neurons. Their increased excitatory input on inhibitory neurons in VCN may possibly reduce central hyperactivity and tinnitus.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB347
    Nombre del producto:
    Anti-Growth Associated Protein 43 Antibody, clone 9-1E12
  • Cell-to-cell coupling in engineered pairs of rat ventricular cardiomyocytes: relation between Cx43 immunofluorescence and intercellular electrical conductance. 22081700

    Gap junctions are composed of connexin (Cx) proteins, which mediate intercellular communication. Cx43 is the dominant Cx in ventricular myocardium, and Cx45 is present in trace amounts. Cx43 immunosignal has been associated with cell-to-cell coupling and electrical propagation, but no studies have directly correlated Cx43 immunosignal to electrical cell-to-cell conductance, g(j), in ventricular cardiomyocyte pairs. To assess the correlation between Cx43 immunosignal and g(j), we developed a method to determine both parameters from the same cell pair. Neonatal rat ventricular cardiomyocytes were seeded on micropatterned islands of fibronectin. This allowed formation of cell pairs with reproducible shapes and facilitated tracking of cell pair locations. Moreover, cell spreading was limited by the fibronectin pattern, which allowed us to increase cell height by reducing the surface area of the pattern. Whole cell dual voltage clamp was used to record g(j) of cell pairs after 3-5 days in culture. Fixation of cell pairs before removal of patch electrodes enabled preservation of cell morphology and offline identification of patched pairs. Subsequently, pairs were immunostained, and the volume of junctional Cx43 was quantified using confocal microscopy, image deconvolution, and three-dimensional reconstruction. Our results show a linear correlation between g(j) and Cx43 immunosignal within a range of 8-50 nS.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB3068
  • Up-regulation of GAP-43 in the chinchilla ventral cochlear nucleus after carboplatin-induced hearing loss: correlations with inner hair cell loss and outer hair cell loss ... 23707995

    Inner ear damage leads to nerve fiber growth and synaptogenesis in the ventral cochlear nucleus (VCN). In this study, we documented the relationship between hair cell loss patterns and synaptic plasticity in the chinchilla VCN using immunolabeling of the growth associated protein-43 (GAP-43), a protein associated with axon outgrowth and modification of presynaptic endings. Unilateral round window application of carboplatin caused hair cell degeneration in which inner hair cells (IHC) were more vulnerable than outer hair cells (OHC). One month after carboplatin treatment (0.5-5 mg/ml), we observed varying patterns of cochlear hair cell loss and GAP-43 expression in VCN. Both IHC loss and OHC loss were strongly correlated with increased GAP-43 immunolabeling in the ipsilateral VCN. We speculate that two factors might promote the expression of GAP-43 in the VCN; one is the loss of afferent input through IHC or the associated type I auditory nerve fibers. The other occurs when the medial olivocochlear efferent neurons lose their cochlear targets, the OHC, and may as compensation increase their synapse numbers in the VCN.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB347
    Nombre del producto:
    Anti-Growth Associated Protein 43 Antibody, clone 9-1E12
  • Selective cochlear degeneration in mice lacking the F-box protein, Fbx2, a glycoprotein-specific ubiquitin ligase subunit. 17494702

    Little is known about the role of protein quality control in the inner ear. We now report selective cochlear degeneration in mice deficient in Fbx2, a ubiquitin ligase F-box protein with specificity for high-mannose glycoproteins (Yoshida et al., 2002). Originally described as a brain-enriched protein (Erhardt et al., 1998), Fbx2 is also highly expressed in the organ of Corti, in which it has been called organ of Corti protein 1 (Thalmann et al., 1997). Mice with targeted deletion of Fbxo2 develop age-related hearing loss beginning at 2 months. Cellular degeneration begins in the epithelial support cells of the organ of Corti and is accompanied by changes in cellular membrane integrity and early increases in connexin 26, a cochlear gap junction protein previously shown to interact with Fbx2 (Henzl et al., 2004). Progressive degeneration includes hair cells and the spiral ganglion, but the brain itself is spared despite widespread CNS expression of Fbx2. Cochlear Fbx2 binds Skp1, the common binding partner for F-box proteins, and is an unusually abundant inner ear protein. Whereas cochlear Skp1 levels fall in parallel with the loss of Fbx2, other components of the canonical SCF (Skp1, Cullin1, F-box, Rbx1) ubiquitin ligase complex remain unchanged and show little if any complex formation with Fbx2/Skp1, suggesting that cochlear Fbx2 and Skp1 form a novel, heterodimeric complex. Our findings demonstrate that components of protein quality control are essential for inner ear homeostasis and implicate Fbx2 and Skp1 as potential genetic modifiers in age-related hearing loss.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB374
    Nombre del producto:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5
  • The role of gap junction communication and oxidative stress in the propagation of toxic effects among high-dose α-particle-irradiated human cells. 21388278

    We investigated the roles of gap junction communication and oxidative stress in modulating potentially lethal damage repair in human fibroblast cultures exposed to doses of α particles or γ rays that targeted all cells in the cultures. As expected, α particles were more effective than γ rays at inducing cell killing; further, holding γ-irradiated cells in the confluent state for several hours after irradiation promoted increased survival and decreased chromosomal damage. However, maintaining α-particle-irradiated cells in the confluent state for various times prior to subculture resulted in increased rather than decreased lethality and was associated with persistent DNA damage and increased protein oxidation and lipid peroxidation. Inhibiting gap junction communication with 18-α-glycyrrhetinic acid or by knockdown of connexin43, a constitutive protein of junctional channels in these cells, protected against the toxic effects in α-particle-irradiated cell cultures during confluent holding. Upregulation of antioxidant defense by ectopic overexpression of glutathione peroxidase protected against cell killing by α particles when cells were analyzed shortly after exposure. However, it did not attenuate the decrease in survival during confluent holding. Together, these findings indicate that the damaging effect of α particles results in oxidative stress, and the toxic effects in the hours after irradiation are amplified by intercellular communication, but the communicated molecule(s) is unlikely to be a substrate of glutathione peroxidase.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-345
    Nombre del producto:
    Anti-p21/WAF1/Cip1 Antibody