SMAD3 deficiency promotes inflammatory aortic aneurysms in angiotensin II-infused mice via activation of iNOS. Tan, CK; Tan, EH; Luo, B; Huang, CL; Loo, JS; Choong, C; Tan, NS Journal of the American Heart Association
2
e000269
2013
Mostrar resumen
Ninety percent of the patients carrying distinct SMAD3 mutations develop aortic aneurysms and dissections, called aneurysms-osteoarthritis syndrome (AOS). However, the etiology and molecular events downstream of SMAD3 leading to the pathogenesis of aortic aneurysms in these patients still remain elusive. Therefore, we aimed to investigate the vascular phenotypes of SMAD3-knockout mice.We have shown that angiotensin II-induced vascular inflammation, but not hypertension, leads to aortic aneurysms and dissections, ultimately causing aortic rupture and death in mice. Lipopolysaccharide-triggered inflammation confirmed that enhanced aortic macrophage recruitment was essential for aneurysm formation in angiotensin II-infused SMAD3-knockout mice. In contrast, phenylephrine-triggered hypertension alone was insufficient to induce aortic aneurysms in mice. Using uniaxial tensile and contractility tests, we showed that SMAD3 deficiency resulted in defective aortic biomechanics and physiological functions, which caused weakening of the aortic wall and predisposed the mice to aortic aneurysms. Chromatin immunoprecipitation (ChIP) and re-ChIP assays revealed that the underlying mechanism involved aberrant upregulation of inducible nitric oxide synthase (iNOS)-derived nitric oxide production and activation of elastolytic matrix metalloproteinases 2 and 9. Administration of clodronate-liposomes and iNOS inhibitor completely abrogated these aortic conditions, thereby identifying iNOS-mediated nitric oxide secretion from macrophages as the downstream event of SMAD3 that drives this severe pathology.Macrophage depletion and iNOS antagonism represent 2 promising approaches for preventing aortic aneurysms related to SMAD3 mutations and merit further investigation as adjunctive strategies for the life-threatening manifestations of AOS. | 23782924
|
Characterization of the transcripts and protein isoforms for cytoplasmic polyadenylation element binding protein-3 (CPEB3) in the mouse retina. Wang, XP; Cooper, NG BMC molecular biology
10
109
2009
Mostrar resumen
Cytoplasmic polyadenylation element binding proteins (CPEBs) regulate translation by binding to regulatory motifs of defined mRNA targets. This translational mechanism has been shown to play a critical role in oocyte maturation, early development, and memory formation in the hippocampus. Little is known about the presence or functions of CPEBs in the retina. The purpose of the current study is to investigate the alternative splicing isoforms of a particular CPEB, CPEB3, based on current databases, and to characterize the expression of CPEB3 in the retina.In this study, we have characterized CPEB3, whose putative role is to regulate the translation of GluR2 mRNA. We identify the presence of multiple alternative splicing isoforms of CPEB3 transcripts and proteins in the current databases. We report the presence of eight alternative splicing patterns of CPEB3, including a novel one, in the mouse retina. All but one of the patterns appear to be ubiquitous in 13 types of tissue examined. The relative abundance of the patterns in the retina is demonstrated. Experimentally, we show that CPEB3 expression is increased in a time-dependent manner during the course of postnatal development, and CPEB3 is localized mostly in the inner retina, including retinal ganglion cells.The level of CPEB3 was up-regulated in the retina during development. The presence of multiple CPEB3 isoforms indicates remarkable complexity in the regulation and function of CPEB3. | 20003455
|