X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids. Bhattacharyya, T; Reifova, R; Gregorova, S; Simecek, P; Gergelits, V; Mistrik, M; Martincova, I; Pialek, J; Forejt, J PLoS genetics
10
e1004088
2014
Mostrar resumen
Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm) allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes. | Immunofluorescence | 24516397
|
Genetically enhanced asynapsis of autosomal chromatin promotes transcriptional dysregulation and meiotic failure. Homolka, D; Jansa, P; Forejt, J Chromosoma
121
91-104
2011
Mostrar resumen
During meiosis, pairing of homologous chromosomes and their synapsis are essential prerequisites for normal male gametogenesis. Even limited autosomal asynapsis often leads to spermatogenic impairment, the mechanism of which is not fully understood. The present study was aimed at deliberately increasing the size of partial autosomal asynapsis and analysis of its impact on male meiosis. For this purpose, we studied the effect of t(12) haplotype encompassing four inversions on chromosome 17 on mouse autosomal translocation T(16;17)43H (abbreviated T43H). The T43H/T43H homozygotes were fully fertile in both sexes, while +/T43H heterozygous males, but not females, were sterile with meiotic arrest at late pachynema. Inclusion of the t(12) haplotype in trans to the T43H translocation resulted in enhanced asynapsis of the translocated autosome, ectopic phosphorylation of histone H2AX, persistence of RAD51 foci, and increased gene silencing around the translocation break. Increase was also on colocalization of unsynapsed chromatin with sex body. Remarkably, we found that transcriptional silencing of the unsynapsed autosomal chromatin precedes silencing of sex chromosomes. Based on the present knowledge, we conclude that interference of meiotic silencing of unsynapsed autosomes with meiotic sex chromosome inactivation is the most likely cause of asynapsis-related male sterility. | Immunocytochemistry | 22002499
|
The role of substance P in the marginal division of the neostriatum in learning and memory is mediated through the neurokinin 1 receptor in rats. Xue-mei Liu,Si Yun Shu,Chang-chun Zeng,Ye-feng Cai,Kui-hua Zhang,Chuan-xing Wang,Jian Fang Neurochemical research
36
2010
Mostrar resumen
Substance P (SP) is a neuropeptide that plays an important role in inflammation, respiration, pain, aggression, anxiety, and learning and memory mainly through its high affinity neurokinin 1 receptor (NK1R). The marginal division (MrD) is a pan-shaped subdivision in the caudomedial margin of the neostriatum in the mammalian brain and is known to be involved in learning and memory. We studied the expression of SP, NK1R and NK1R mRNA in the rat striatum by immunohistochemistry, immunofluorescence and in situ hybridization, and found that the levels of SP, NK1R protein and NK1R mRNA were high in the cell bodies, fibers and terminals of neurons in the neostriatum, especially in the MrD. Knocking down NK1R activity in the MrD by using an antisense oligonucleotide against NK1R mRNA inhibited learning and memory in a Y-maze behavioral test. Our results show that NK1R mediates the role of SP in the MrD in learning and memory. | | 21611833
|