Acylcarnitines activate proinflammatory signaling pathways. Rutkowsky, JM; Knotts, TA; Ono-Moore, KD; McCoin, CS; Huang, S; Schneider, D; Singh, S; Adams, SH; Hwang, DH American journal of physiology. Endocrinology and metabolism
306
E1378-87
2014
Mostrar resumen
Incomplete β-oxidation of fatty acids in mitochondria is a feature of insulin resistance and type 2 diabetes mellitus (T2DM). Previous studies revealed that plasma concentrations of medium- and long-chain acylcarnitines (by-products of incomplete β-oxidation) are elevated in T2DM and insulin resistance. In a previous study, we reported that mixed D,L isomers of C12- or C14-carnitine induced an NF-κB-luciferase reporter gene in RAW 264.7 cells, suggesting potential activation of proinflammatory pathways. Here, we determined whether the physiologically relevant L-acylcarnitines activate classical proinflammatory signaling pathways and if these outcomes involve pattern recognition receptor (PRR)-associated pathways. Acylcarnitines induced the expression of cyclooxygenase-2 in a chain length-dependent manner in RAW 264.7 cells. L-C14 carnitine (5-25 μM), used as a representative acylcarnitine, stimulated the expression and secretion of proinflammatory cytokines in a dose-dependent manner. Furthermore, L-C14 carnitine induced phosphorylation of JNK and ERK, common downstream components of many proinflammatory signaling pathways including PRRs. Knockdown of MyD88, a key cofactor in PRR signaling and inflammation, blunted the proinflammatory effects of acylcarnitine. While these results point to potential involvement of PRRs, L-C14 carnitine promoted IL-8 secretion from human epithelial cells (HCT-116) lacking Toll-like receptors (TLR)2 and -4, and did not activate reporter constructs in TLR overexpression cell models. Thus, acylcarnitines have the potential to activate inflammation, but the specific molecular and tissue target(s) involved remain to be identified. | | 24760988
|
Cardiotoxin III inhibits proliferation and migration of oral cancer cells through MAPK and MMP signaling. Yen, CY; Liang, SS; Han, LY; Chou, HL; Chou, CK; Lin, SR; Chiu, CC TheScientificWorldJournal
2013
650946
2013
Mostrar resumen
Cardiotoxin III (CTXIII), isolated from the snake venom of Formosan cobra Naja naja atra, has previously been found to induce apoptosis in many types of cancer. Early metastasis is typical for the progression of oral cancer. To modulate the cell migration behavior of oral cancer is one of the oral cancer therapies. In this study, the possible modulating effect of CTXIII on oral cancer migration is addressed. In the example of oral squamous carcinoma Ca9-22 cells, the cell viability was decreased by CTXIII treatment in a dose-responsive manner. In wound-healing assay, the cell migration of Ca9-22 cells was attenuated by CTXIII in a dose- and time-responsive manner. After CTXIII treatment, the MMP-2 and MMP-9 protein expressions were downregulated, and the phosphorylation of JNK and p38-MAPK was increased independent of ERK phosphorylation. In conclusion, CTXIII has antiproliferative and -migrating effects on oral cancer cells involving the p38-MAPK and MMP-2/-9 pathways. | Western Blotting | 23710144
|
Activation of c-Jun N-terminal kinase (JNK) during mitosis in retinal progenitor cells. Ribas, VT; Gonçalves, BS; Linden, R; Chiarini, LB PloS one
7
e34483
2011
Mostrar resumen
Most studies of c-Jun N-terminal Kinase (JNK) activation in retinal tissue were done in the context of neurodegeneration. In this study, we investigated the behavior of JNK during mitosis of progenitor cells in the retina of newborn rats. Retinal explants from newborn rats were kept in vitro for 3 hours and under distinct treatments. Sections of retinal explants or freshly fixed retinal tissue were used to detect JNK phosphorylation by immunohistochemistry, and were examined through both fluorescence and confocal microscopy. Mitotic cells were identified by chromatin morphology, histone-H3 phosphorylation, and location in the retinal tissue. The subcellular localization of proteins was analyzed by double staining with both a DNA marker and an antibody to each protein. Phosphorylation of JNK was also examined by western blot. The results showed that in the retina of newborn rats (P1), JNK is phosphorylated during mitosis of progenitor cells, mainly during the early stages of mitosis. JNK1 and/or JNK2 were preferentially phosphorylated in mitotic cells. Inhibition of JNK induced cell cycle arrest, specifically in mitosis. Treatment with the JNK inhibitor decreased the number of cells in anaphase, but did not alter the number of cells in either prophase/prometaphase or metaphase. Moreover, cells with aberrant chromatin morphology were found after treatment with the JNK inhibitor. The data show, for the first time, that JNK is activated in mitotic progenitor cells of developing retinal tissue, suggesting a new role of JNK in the control of progenitor cell proliferation in the retina. | | 22496813
|
Upon Wnt stimulation, Rac1 activation requires Rac1 and Vav2 binding to p120-catenin. Valls, G; Codina, M; Miller, RK; Del Valle-Pérez, B; Vinyoles, M; Caelles, C; McCrea, PD; García de Herreros, A; Duñach, M Journal of cell science
125
5288-301
2011
Mostrar resumen
A role for Rac1 GTPase in canonical Wnt signaling has recently been demonstrated, showing that it is required for β-catenin translocation to the nucleus. In this study, we investigated the mechanism of Rac1 stimulation by Wnt. Upregulation of Rac1 activity by Wnt3a temporally correlated with enhanced p120-catenin binding to Rac1 and Vav2. Vav2 and Rac1 association with p120-catenin was modulated by phosphorylation of this protein, which was stimulated upon serine/threonine phosphorylation by CK1 and inhibited by tyrosine phosphorylation by Src or Fyn. Acting on these two post-translational modifications, Wnt3a induced the release of p120-catenin from E-cadherin, enabled the interaction of p120-catenin with Vav2 and Rac1, and facilitated Rac1 activation by Vav2. Given that p120-catenin depletion disrupts gastrulation in Xenopus, we analyzed p120-catenin mutants for their ability to rescue this phenotype. In contrast to the wild-type protein or other controls, p120-catenin point mutants that were deficient in the release from E-cadherin or in Vav2 or Rac1 binding failed to rescue p120-catenin depletion. Collectively, these results indicate that binding of p120-catenin to Vav2 and Rac1 is required for the activation of this GTPase upon Wnt signaling. | | 22946057
|
CD22 regulates adaptive and innate immune responses of B cells. Kawasaki, N; Rademacher, C; Paulson, JC Journal of innate immunity
3
411-9
2010
Mostrar resumen
B cells sense microenvironments through the B cell receptor (BCR) and Toll-like receptors (TLRs). While signals from BCR and TLRs synergize to distinguish self from nonself, inappropriate regulation can result in development of autoimmune disease. Here we show that CD22, an inhibitory co-receptor of BCR, also negatively regulates TLR signaling in B cells. CD22-deficient (Cd22(-/-)) B cells exhibit hyperactivation in response to ligands of TLRs 3, 4 and 9. Evidence suggests that this results from impaired induction of suppressors of cytokine signaling 1 and 3, well-known suppressors of TLR signaling. Antibody-mediated sequestration of CD22 on wild-type (WT) B cells augments proliferation by TLR ligands. Conversely, expression of CD22 in a Cd22(-/-) B cell line blunts responses to TLR ligands. We also show that lipopolysaccharide-induced transcription by nuclear factor-κB is inhibited by ectopic expression of CD22 in a TLR4 reporter cell line. Taken together, these results suggest that negative regulation of TLR signaling is an intrinsic property of CD22. Since TLRs and BCR activate B cells through different signaling pathways, and are differentially localized in B cells, CD22 exhibits a broader regulation of receptors that mediate adaptive and innate immune responses of B cells than previously recognized. | | 21178327
|
MEK4 function, genistein treatment, and invasion of human prostate cancer cells. Xu, L; Ding, Y; Catalona, WJ; Yang, XJ; Anderson, WF; Jovanovic, B; Wellman, K; Killmer, J; Huang, X; Scheidt, KA; Montgomery, RB; Bergan, RC Journal of the National Cancer Institute
101
1141-55
2009
Mostrar resumen
Dietary intake of genistein by patients with prostate cancer has been associated with decreased metastasis and mortality. Genistein blocks activation of p38 mitogen-activated protein kinase and thus inhibits matrix metalloproteinase-2 (MMP-2) expression and cell invasion in cultured cells and inhibits metastasis of human prostate cancer cells in mice. We investigated the target for genistein in prostate cancer cells.Prostate cell lines PC3-M, PC3, 1532NPTX, 1542NPTX, 1532CPTX, and 1542CPTX were used. All cell lines were transiently transfected with a constitutively active mitogen-activated protein kinase kinase 4 (MEK4) expression vector (to increase MEK4 expression), small interfering RNA against MEK4 (to decrease MEK4 expression), or corresponding control constructs. Cell invasion was assessed by a Boyden chamber assay. Gene expression was assessed by a quantitative reverse transcription-polymerase chain reaction. Protein expression was assessed by Western blot analysis. Modeller and AutoDock programs were used for modeling of the structure of MEK4 protein and ligand docking, respectively. MMP-2 transcript levels were assessed in normal prostate epithelial cells from 24 patients with prostate cancer from a phase II randomized trial comparing genistein treatment with no treatment. Statistical significance required a P value of .050 or less. All statistical tests were two-sided.Overexpression of MEK4 increased MMP-2 expression and cell invasion in all six cell lines. Decreased MEK4 expression had the opposite effects. Modeling showed that genistein bound to the active site of MEK4. Genistein inhibited MEK4 kinase activity with a half maximal inhibitory concentration of 0.40 microM (95% confidence interval [CI] = 0.36 to 0.45 muM). The MMP-2 transcript level in normal prostate epithelial cells was statistically significantly higher in the untreated group (100%) than in the genistein-treated group (24%; difference = 76%, 95% CI = 38% to 115%; P = .045).We identified MEK4 as a proinvasion protein in six human prostate cancer cell lines and the target for genistein. We showed, to our knowledge for the first time, that genistein treatment, compared with no treatment, was associated with decreased levels of MMP-2 transcripts in normal prostate cells from prostate cancer-containing tissue. | | 19638505
|
Decoy receptor 3, upregulated by Epstein-Barr virus latent membrane protein 1, enhances nasopharyngeal carcinoma cell migration and invasion. Ho, CH; Chen, CL; Li, WY; Chen, CJ Carcinogenesis
30
1443-51
2009
Mostrar resumen
Decoy receptor 3 (DcR3), a member of tumor necrosis factor receptor superfamily, has been implicated in tumorigenesis through its abilities to modulate immune responses and induce angiogenesis. Epstein-Barr virus (EBV), a ubiquitous gamma-herpesvirus, is associated with malignancies including nasopharyngeal carcinoma (NPC). Previous studies show that DcR3 is overexpressed in EBV-positive lymphomas and Rta, an EBV transcription activator, can upregulate DcR3 in Burkitt lymphoma cell lines. However, DcR3 expression has not been demonstrated in EBV-associated NPC nor have there been any EBV latent genes linked to DcR3 upregulation. Here, we showed DcR3 was overexpressed in NPC. Higher DcR3 expression score and DcR3-positive rate were found in metastatic NPC than in primary NPC tissues, suggesting DcR3 may enhance cell metastatic potential. This hypothesis is supported by our observation that NPC HONE-1 cells overexpressing DcR3 exhibited significant higher migration and invasion abilities in vitro. We found besides Rta, EBV latent membrane protein (LMP) 1 can upregulate DcR3 via nuclear factor-kappaB and phosphatidylinositol 3-kinase-signaling events. Approximate 75% of LMP1-positive NPC tissues overexpressed DcR3, suggesting LMP1 may enhance DcR3 expression in vivo. Data herein suggested that increasing DcR3 expression by LMP1 not only helps EBV-associated cancer cells gain survival advantage by preventing host immune detection but also increases the chance of cancer metastasis by enhancing cell migration and invasion. All these DcR3-mediated events facilitate normal cells to gain cancer hallmarks. | | 19483191
|
Subcellular receptor redistribution and enhanced microspike formation by a Ret receptor preferentially recruiting Dok. Anna Stenqvist, T Kalle Lundgren, Matthew J Smith, Ola Hermanson, Gonçalo Castelo-Branco, Tony Pawson, Patrik Ernfors Neuroscience letters
435
11-6
2008
Mostrar resumen
Ret is a receptor tyrosine kinase for the GDNF family of ligands and plays important roles during nervous system development for cell proliferation, cell migration and neurite growth. Signaling initiated from intracellular tyrosine 1062, by recruitment of several different phosphotyrosine binding (PTB) proteins (i.e. Shc, Frs2 and Dok), is important for these biological effects. By a single amino acid substitution in the PTB domain binding sequence of Ret, we have rewired the receptor such that it preferentially recruits Dok (Ret(Dok+)) with little or no remaining interactions with Shc and Frs2. Ret(Dok+) displays a sustained MAP kinase activation and a loss of Akt signaling compared to Ret(WT). We show that early events after ligand stimulation of Ret(Dok+) include massive formation of fine microspikes that are believed to be priming structures for neurite growth from the cell soma. The Ret(Dok+) receptors relocated in the membrane compartment into focal clusters at the tip of the microspikes, which was associated with Cdc42 activation. These results suggest that engagement of different adaptor proteins by Ret results in very different downstream signaling and functions within neurons and that Dok recruitment leads to a rapid receptor relocation and formation of microspikes. | | 18353552
|
Role of MAPK phosphatase-1 in sustained activation of JNK during ethanol-induced apoptosis in hepatocyte-like VL-17A cells. Venugopal, SK; Chen, J; Zhang, Y; Clemens, D; Follenzi, A; Zern, MA The Journal of biological chemistry
282
31900-8
2007
Mostrar resumen
Ethanol metabolism plays a central role in activating the mitogen-activated protein kinase (MAPK) cascade leading to inflammation and apoptosis. Sustained activation of c-Jun N-terminal kinase (JNK), one of the MAPKs, has been shown to induce apoptosis in hepatocytes. MAPK phosphatase-1 (MKP-1) has been shown to dephosphorylate MAPKs in several cells. The aim of the study is to evaluate the role of MKP-1 in sustained JNK activation as a mechanism to explain ethanol-induced hepatocyte apoptosis. VL-17A cells (HepG2 cells overexpressing alcohol dehydrogenase and cytochrome P450-2E1) were exposed to ethanol for different time periods. Western blots were performed for MKP-1, phospho-JNK, phosphotyrosine, and protein kinase Cdelta (PKCdelta). Electrophoretic mobility shift assays for AP-1 were performed. Apoptosis was measured by caspase-3 activity assay, TUNEL, and 4',6-diamidino-2-phenylindole staining. Reactive oxygen species were neutralized by overexpressing both superoxide dismutase-3 and catalase genes using lentiviral vectors in VL-17A cells. Ethanol incubation markedly decreased the MKP-1 protein levels to 15% of control levels and was associated with sustained phosphorylation of p46 JNK and p54 JNK, as well as increased apoptosis. VL-17A cells overexpressing superoxide dismutase-3 and catalase, treatment with a tyrosine kinase inhibitor, or incubation of the cells with PKCdelta small interference RNAs significantly inhibited the ethanol-induced MKP-1 degradation and apoptosis. Ethanol-induced oxidative stress enhanced the tyrosine phosphorylation of PKCdelta, which in turn caused the proteasomal degradation of MKP-1, leading to sustained JNK activation and increased apoptosis in VL-17A cells. | Western Blotting | 17848570
|
WNT pathways in the neonatal ovine uterus: potential specification of endometrial gland morphogenesis by SFRP2. Hayashi, K; Spencer, TE Biology of reproduction
74
721-33
2005
Mostrar resumen
Endometrial glands are critical for uterine function and develop between birth (Postnatal Day [P] 0) and P56 in the neonatal ewe. Endometrial gland morphogenesis or adenogenesis involves the site-specific budding differentiation of the glandular epithelium from the luminal epithelium followed by their coiling/branching development within the stroma of the intercaruncular areas of the endometrium. To determine whether WNT signaling regulates endometrial adenogenesis, the WNT signaling system was studied in the neonatal ovine uterus. WNT5A, WNT7A, and WNT11 were expressed in the uterine epithelia, whereas WNT2B was in the stroma. The WNT receptors FZD2 and FZD6 and coreceptor LRP6 were detected in all uterine cells, and FZD6 was particularly abundant in the endometrial epithelia. Secreted FZD-related protein-2 (SFRP2), a WNT antagonist, was not detected in the P0 uterus, but was abundant in the aglandular caruncular areas of the endometrium between P7 and P56. Exposure of ewes to estrogens during critical developmental periods inhibits or retards endometrial adenogenesis. Estrogen-induced disruption of endometrial adenogenesis was associated with reduction or ablation of WNT2B, WNT7A, and WNT11, and with an increase in WNT2 and SFRP2 mRNA, depending on exposure period. Collectively, results implicate the canonical and noncanonical WNT pathways in regulation of postnatal ovine uterine development and endometrial adenogenesis. Expression of SFRP2 in aglandular caruncular areas may inhibit the WNT signaling pathway, thereby concentrating WNT signaling and restricting endometrial adenogenesis in the intercaruncular areas of the uterus. Further, estrogen-induced inhibition of adenogenesis may be mediated by a reduction in WNT signaling caused by aberrant induction of SFRP2 and loss of several critical WNTs. | Immunohistochemistry (Paraffin) | 16407498
|