Ischemia induces closure of gap junctional channels and opening of hemichannels in heart-derived cells and tissue. Johansen, D; Cruciani, V; Sundset, R; Ytrehus, K; Mikalsen, SO Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
28
103-14
2010
Mostrar resumen
Gap junction intercellular communication (GJIC) and hemichannel permeability may have important roles during an ischemic insult. Our aim was to evaluate the effect of ischemia on gap junction channels and hemichannels.We used neonatal rat heart myofibroblasts and simulated ischemia with a HEPES buffer with high potassium, low pH, absence of glucose, and oxygen tension was reduced by dithionite. Microinjection, western blot, immunofluorescence, cell viability and dye uptake were used to evaluate the effects induced by dithionite. Isolated perfused rat hearts were used to analyse infarct size.Short period with simulated ischemia reduced the ability to transfer a dye between neighbouring cells, which indicated reduced GJIC. Prolonged exposure to simulated ischemia caused opening of hemichannels, and cell death was apparent while gap junction channels remained closed. Connexin 43 became partially dephosphorylated and the total amount decreased during simulated ischemia. We were not able to detect the alternative hemichannel-forming protein, Pannexin 1, in these cells. The potential importance of Connexin 43 or Pannexin 1 hemichannels in ischemia-induced infarct in the intact heart was studied by perfusion of the heart in the presence of peptides that block one or the other type of hemichannels. The connexin-derived peptide, Gap26, significantly reduced the infract/risk zone ratio (control 48.7±4.2% and Gap26 19.4±4.1%, pless than 0.001), while the pannexin-derived peptide, (10)Panx1, did not change infarct/risk ratio.Connexin 43 is most likely responsible for both closure of gap junction channels and opening of hemichannels during simulated ischemia in neonatal rat heart myofibroblasts. Opening of connexin 43 hemichannels during ischemia-reperfusion seems to be an important mechanism for ischemia-reperfusion injury in the heart. By preventing the opening of these channels during early ischemia-reperfusion the infarct size becomes significantly reduced. | 21865853
|
Calcium-induced permeability transition in rat brain mitochondria is promoted by carbenoxolone through targeting connexin43. Azarashvili, T; Baburina, Y; Grachev, D; Krestinina, O; Evtodienko, Y; Stricker, R; Reiser, G American journal of physiology. Cell physiology
300
C707-20
2010
Mostrar resumen
Carbenoxolone (Cbx), a substance from medicinal licorice, is used for antiinflammatory treatments. We investigated the mechanism of action of Cbx on Ca(2+)-induced permeability transition pore (PTP) opening in synaptic and nonsynaptic rat brain mitochondria (RBM), as well as in rat liver mitochondria (RLM), in an attempt to identify the molecular target of Cbx in mitochondria. Exposure to threshold Ca(2+) load induced PTP opening, as seen by sudden Ca(2+) efflux from the mitochondrial matrix and membrane potential collapse. In synaptic RBM, Cbx (1 μM) facilitated the Ca(2+)-induced, cyclosporine A-sensitive PTP opening, while in nonsynaptic mitochondria the Cbx threshold concentration was higher. A well-known molecular target of Cbx is the connexin (Cx) family, gap junction proteins. Moreover, Cx43 was previously found in heart mitochondria and attributed to the preconditioning mechanism of protection. Thus, we hypothesized that Cx43 might be a target for Cbx in brain mitochondria. For the first time, we detected Cx43 by Western blot in RBM, but Cx43 was absent in RLM. Interestingly, two anti-Cx43 antibodies, directed against amino acids 252 to 270 of rat Cx43, abolished the Cbx-induced enhancement of PTP opening in total RBM and in synaptic mitochondria, but not in RLM. In total RBM and in synaptic mitochondria, PTP caused dephosphorylation of Cx43 at serine 368. The phosphorylation level of serine 368 was decreased at threshold calcium concentration and additionally in the combined presence of Cbx in synaptic mitochondria. In conclusion, active mitochondrial Cx43 appears to counteract the Ca(2+)-induced PTP opening and thus might inhibit the PTP-ensuing mitochondrial demise and cell death. Consequently, we suggest that activity of Cx43 in brain mitochondria represents a novel molecular target for protection. | 21148408
|
An angiotensin II- and NF-kappaB-dependent mechanism increases connexin 43 in murine arteries targeted by renin-dependent hypertension. Alonso, F; Krattinger, N; Mazzolai, L; Simon, A; Waeber, G; Meda, P; Haefliger, JA Cardiovascular research
87
166-76
2009
Mostrar resumen
Connexins (Cxs) play a role in the contractility of the aorta wall. We investigated how connexins of the endothelial cells (ECs; Cx37, Cx40) and smooth muscle cells (SMCs; Cx43, Cx45) of the aorta change during renin-dependent and -independent hypertension.We subjected both wild-type (WT) mice and mice lacking Cx40 (Cx40(-/-)), to either a two-kidney, one-clip procedure or to N-nitro-l-arginine-methyl-ester treatment, which induce renin-dependent and -independent hypertension, respectively. All hypertensive mice featured a thickened aortic wall, increased levels of Cx37 and Cx45 in SMC, and of Cx40 in EC (except in Cx40(-/-) mice). Cx43 was up-regulated, with no effect on its S368 phosphorylation, only in the SMCs of renin-dependent models of hypertension. Blockade of the renin-angiotensin system of Cx40(-/-) mice normalized blood pressure and prevented both aortic thickening and Cx alterations. Ex vivo exposure of WT aortas, carotids, and mesenteric arteries to physiologically relevant levels of angiotensin II (AngII) increased the levels of Cx43, but not of other Cx. In the aortic SMC line of A7r5 cells, AngII activated kinase-dependent pathways and induced binding of the nuclear factor-kappa B (NF-kappaB) to the Cx43 gene promoter, increasing Cx43 expression.In both large and small arteries, hypertension differently regulates Cx expression in SMC and EC layers. Cx43 is selectively increased in renin-dependent hypertension via an AngII activation of the extracellular signal-regulated kinase and NF-kappaB pathways. Artículo Texto completo | 20110337
|
Mechanisms of unpinning and termination of ventricular tachycardia. Ripplinger, CM; Krinsky, VI; Nikolski, VP; Efimov, IR American journal of physiology. Heart and circulatory physiology
291
H184-92
2005
Mostrar resumen
High-energy defibrillation shock is the only therapy for ventricular tachyarrhythmias. However, because of adverse side effects, lowering defibrillation energy is desirable. We investigated mechanisms of unpinning, destabilization, and termination of ventricular tachycardia (VT) by low-energy shocks in isolated rabbit right ventricular preparations (n = 22). Stable VT was initiated with burst pacing and was optically mapped. Monophasic "unpinning" shocks (10 ms) of different strengths were applied at various phases throughout the reentry cycle. In 8 of 22 preparations, antitachycardia pacing (ATP: 8-20 pulses, 50-105% of period, 0.8-10 mA) was also applied. Termination of reentry by ATP was achieved in only 5 of 8 preparations. Termination by unpinning occurred in all 22 preparations. Rayleigh's test showed a statistically significant unpinning phase window, during which reentry could be unpinned and subsequently terminated with E80 (magnitude at which 80% of reentries were unpinned) = 1.2 V/cm. All reentries were unpinned with field strengths less than or = 2.4 V/cm. Unpinning was achieved by inducing virtual electrode polarization and secondary sources of excitation at the core of reentry. Optical mapping revealed the mechanisms of phase-dependent unpinning of reentry. These results suggest that a 20-fold reduction in energy could be achieved compared with conventional high-energy defibrillation and that the unpinning method may be more effective than ATP for terminating stable, pinned reentry in this experimental model. | 16501014
|