Calpain cleavage and inactivation of the sodium calcium exchanger-3 occur downstream of Aβ in Alzheimer's disease. Atherton, J; Kurbatskaya, K; Bondulich, M; Croft, CL; Garwood, CJ; Chhabra, R; Wray, S; Jeromin, A; Hanger, DP; Noble, W Aging cell
13
49-59
2014
Mostrar resumen
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by pathological deposits of β-amyloid (Aβ) in senile plaques, intracellular neurofibrillary tangles (NFTs) comprising hyperphosphorylated aggregated tau, synaptic dysfunction and neuronal death. Substantial evidence indicates that disrupted neuronal calcium homeostasis is an early event in AD that could mediate synaptic dysfunction and neuronal toxicity. Sodium calcium exchangers (NCXs) play important roles in regulating intracellular calcium, and accumulating data suggests that reduced NCX function, following aberrant proteolytic cleavage of these exchangers, may contribute to neurodegeneration. Here, we show that elevated calpain, but not caspase-3, activity is a prominent feature of AD brain. In addition, we observe increased calpain-mediated cleavage of NCX3, but not a related family member NCX1, in AD brain relative to unaffected tissue and that from other neurodegenerative conditions. Moreover, the extent of NCX3 proteolysis correlated significantly with amounts of Aβ1-42. We also show that exposure of primary cortical neurons to oligomeric Aβ1-42 results in calpain-dependent cleavage of NCX3, and we demonstrate that loss of NCX3 function is associated with Aβ toxicity. Our findings suggest that Aβ mediates calpain cleavage of NCX3 in AD brain and therefore that reduced NCX3 activity could contribute to the sustained increases in intraneuronal calcium concentrations that are associated with synaptic and neuronal dysfunction in AD. | Western Blotting | | 23919677
|
N-methyl-D-aspartate receptor- and calpain-mediated proteolytic cleavage of K+-Cl- cotransporter-2 impairs spinal chloride homeostasis in neuropathic pain. Zhou, HY; Chen, SR; Byun, HS; Chen, H; Li, L; Han, HD; Lopez-Berestein, G; Sood, AK; Pan, HL The Journal of biological chemistry
287
33853-64
2011
Mostrar resumen
Loss of synaptic inhibition by γ-aminobutyric acid and glycine due to potassium chloride cotransporter-2 (KCC2) down-regulation in the spinal cord is a critical mechanism of synaptic plasticity in neuropathic pain. Here we present novel evidence that peripheral nerve injury diminishes glycine-mediated inhibition and induces a depolarizing shift in the reversal potential of glycine-mediated currents (E(glycine)) in spinal dorsal horn neurons. Blocking glutamate N-methyl-D-aspartate (NMDA) receptors normalizes synaptic inhibition, E(glycine), and KCC2 by nerve injury. Strikingly, nerve injury increases calcium-dependent calpain activity in the spinal cord that in turn causes KCC2 cleavage at the C terminus. Inhibiting calpain blocks KCC2 cleavage induced by nerve injury and NMDA, thereby normalizing E(glycine). Furthermore, calpain inhibition or silencing of μ-calpain at the spinal level reduces neuropathic pain. Thus, nerve injury promotes proteolytic cleavage of KCC2 through NMDA receptor-calpain activation, resulting in disruption of chloride homeostasis and diminished synaptic inhibition in the spinal cord. Targeting calpain may represent a new strategy for restoring KCC2 levels and tonic synaptic inhibition and for treating chronic neuropathic pain. | Western Blotting | Rat | 22854961
|
Calpain and PARP activation during photoreceptor cell death in P23H and S334ter rhodopsin mutant rats. Kaur, J; Mencl, S; Sahaboglu, A; Farinelli, P; van Veen, T; Zrenner, E; Ekström, P; Paquet-Durand, F; Arango-Gonzalez, B PloS one
6
e22181
2010
Mostrar resumen
Retinitis pigmentosa (RP) is a heterogeneous group of inherited neurodegenerative diseases affecting photoreceptors and causing blindness. Many human cases are caused by mutations in the rhodopsin gene. An important question regarding RP pathology is whether different genetic defects trigger the same or different cell death mechanisms. To answer this question, we analysed photoreceptor degeneration in P23H and S334ter transgenic rats carrying rhodopsin mutations that affect protein folding and sorting respectively. We found strong activation of calpain and poly(ADP-ribose) polymerase (PARP) in both mutants, concomitant with calpastatin down-regulation, increased oxidative DNA damage and accumulation of PAR polymers. These parameters were strictly correlated with the temporal progression of photoreceptor degeneration, mirroring earlier findings in the phosphodiesterase-6 mutant rd1 mouse, and suggesting execution of non-apoptotic cell death mechanisms. Interestingly, activation of caspases-3 and -9 and cytochrome c leakage-key events in apoptotic cell death--were observed only in the S334ter mutant, which also showed increased expression of PARP-1. The identification of the same metabolic markers triggered by different mutations in two different species suggests the existence of common cell death mechanisms, which is a major consideration for any mutation independent treatment. | | | 21765948
|
Brain-derived neurotrophic factor and epidermal growth factor activate neuronal m-calpain via mitogen-activated protein kinase-dependent phosphorylation. Zadran, S; Jourdi, H; Rostamiani, K; Qin, Q; Bi, X; Baudry, M The Journal of neuroscience : the official journal of the Society for Neuroscience
30
1086-95
2009
Mostrar resumen
Calpain is a calcium-dependent protease that plays a significant role in synaptic plasticity, cell motility, and neurodegeneration. Two major calpain isoforms are present in brain, with mu-calpain (calpain1) requiring micromolar calcium concentrations for activation and m-calpain (calpain2) needing millimolar concentrations. Recent studies in fibroblasts indicate that epidermal growth factor (EGF) can activate m-calpain independently of calcium via mitogen-activated protein kinase (MAPK)-mediated phosphorylation. In neurons, MAPK is activated by both brain-derived neurotrophic factor (BDNF) and EGF. We therefore examined whether these growth factors could activate m-calpain by MAPK-dependent phosphorylation using cultured primary neurons and HEK-TrkB cells, both of which express BDNF and EGF receptors. Calpain activation was monitored by quantitative analysis of spectrin degradation and by a fluorescence resonance energy transfer (FRET)-based assay, which assessed the truncation of a calpain-specific peptide flanked by the FRET fluorophore pair DABCYL and EDANS. In both cell types, BDNF and EGF rapidly elicited calpain activation, which was completely blocked by MAPK and calpain inhibitors. BDNF stimulated m-calpain but not mu-calpain serine phosphorylation, an effect also blocked by MAPK inhibitors. Remarkably, BDNF- and EGF-induced calpain activation was preferentially localized in dendrites and dendritic spines of hippocampal neurons and was associated with actin polymerization, which was prevented by calpain inhibition. Our results indicate that, in cultured neurons, both BDNF and EGF activate m-calpain by MAPK-mediated phosphorylation. These results strongly support a role for calpain in synaptic plasticity and may explain why m-calpain, although widely expressed in CNS, requires nonphysiological calcium levels for activation. Artículo Texto completo | | | 20089917
|