Transcript stabilization by the RNA-binding protein HuR is regulated by cellular retinoic acid-binding protein 2. Vreeland, AC; Yu, S; Levi, L; de Barros Rossetto, D; Noy, N Molecular and cellular biology
34
2135-46
2014
Mostrar resumen
The RNA-binding protein HuR binds at 3' untranslated regions (UTRs) of target transcripts, thereby protecting them against degradation. We show that HuR directly interacts with cellular retinoic acid-binding protein 2 (CRABP2), a protein known to transport RA from the cytosol to the nuclear retinoic acid receptor (RAR). Association with CRABP2 dramatically increases the affinity of HuR toward target mRNAs and enhances the stability of such transcripts, including that of Apaf-1, the major protein in the apoptosome. We show further that its cooperation with HuR contributes to the ability of CRABP2 to suppress carcinoma cell proliferation. The data show that CRABP2 displays antioncogenic activities both by cooperating with RAR and by stabilizing antiproliferative HuR target transcripts. The observation that CRABP2 controls mRNA stabilization by HuR reveals that in parallel to participating in transcriptional regulation, the protein is closely involved in posttranscriptional regulation of gene expression. | 24687854
|
Temporal blastemal cell gene expression analysis in the kidney reveals new Wnt and related signaling pathway genes to be essential for Wilms' tumor onset. Maschietto, M; Trapé, AP; Piccoli, FS; Ricca, TI; Dias, AA; Coudry, RA; Galante, PA; Torres, C; Fahhan, L; Lourenço, S; Grundy, PE; de Camargo, B; de Souza, S; Neves, EJ; Soares, FA; Brentani, H; Carraro, DM Cell death & disease
2
e224
2010
Mostrar resumen
Wilms' tumors (WTs) originate from metanephric blastema cells that are unable to complete differentiation, resulting in triphasic tumors composed of epithelial, stromal and blastemal cells, with the latter harboring molecular characteristics similar to those of the earliest kidney development stages. Precise regulation of Wnt and related signaling pathways has been shown to be crucial for correct kidney differentiation. In this study, the gene expression profile of Wnt and related pathways was assessed in laser-microdissected blastemal cells in WTs and differentiated kidneys, in human and in four temporal kidney differentiation stages (i.e. E15.5, E17.5, P1.5 and P7.5) in mice, using an orthologous cDNA microarray platform. A signaling pathway-based gene signature was shared between cells of WT and of earliest kidney differentiation stages, revealing genes involved in the interruption of blastemal cell differentiation in WT. Reverse transcription-quantitative PCR showed high robustness of the microarray data demonstrating 75 and 56% agreement in the initial and independent sample sets, respectively. The protein expression of CRABP2, IGF2, GRK7, TESK1, HDGF, WNT5B, FZD2 and TIMP3 was characterized in WTs and in a panel of human fetal kidneys displaying remarkable aspects of differentiation, which was recapitulated in the tumor. Taken together, this study reveals new genes candidate for triggering WT onset and for therapeutic treatment targets. | 22048167
|
Epigenetic silencing of CRABP2 and MX1 in head and neck tumors. Calmon MF, Rodrigues RV, Kaneto CM, Moura RP, Silva SD, Mota LD, Pinheiro DG, Torres C, de Carvalho AF, Cury PM, Nunes FD, Nishimoto IN, Soares FA, da Silva AM, Kowalski LP, Brentani H, Zanelli CF, Silva WA Jr, Rahal P, Tajara EH, Carraro DM, Camargo AA, Valentini SR Neoplasia (New York, N.Y.)
11
1329-39
2009
Mostrar resumen
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease affecting the epithelium of the oral cavity, pharynx and larynx. Conditions of most patients are diagnosed at late stages of the disease, and no sensitive and specific predictors of aggressive behavior have been identified yet. Therefore, early detection and prognostic biomarkers are highly desirable for a more rational management of the disease. Hypermethylation of CpG islands is one of the most important epigenetic mechanisms that leads to gene silencing in tumors and has been extensively used for the identification of biomarkers. In this study, we combined rapid subtractive hybridization and microarray analysis in a hierarchical manner to select genes that are putatively reactivated by the demethylating agent 5-aza-2'-deoxycytidine (5Aza-dC) in HNSCC cell lines (FaDu, UM-SCC-14A, UM-SCC-17A, UM-SCC-38A). This combined analysis identified 78 genes, 35 of which were reactivated in at least 2 cell lines and harbored a CpG island at their 5' region. Reactivation of 3 of these 35 genes (CRABP2, MX1, and SLC15A3) was confirmed by quantitative real-time polymerase chain reaction (PCR; fold change, >or=3). Bisulfite sequencing of their CpG islands revealed that they are indeed differentially methylated in the HNSCC cell lines. Using methylation-specific PCR, we detected a higher frequency of CRABP2 (58.1% for region 1) and MX1 (46.3%) hypermethylation in primary HNSCC when compared with lymphocytes from healthy individuals. Finally, absence of the CRABP2 protein was associated with decreased disease-free survival rates, supporting a potential use of CRABP2 expression as a prognostic biomarker for HNSCC patients. Artículo Texto completo | 20019841
|
Cutaneous clear cell squamous cell carcinoma in situ : clinical, histological and immunohistochemical characterization. Munir Yahya Hussein Al-Arashi,H Randolph Byers Journal of cutaneous pathology
34
2007
Mostrar resumen
Clear cell squamous cell carcinoma in situ (SCCIS) has not been defined in the literature with respect to its clinical, histological, and immunohistochemical features. | 17302606
|
Physical and functional interactions between cellular retinoic acid binding protein II and the retinoic acid-dependent nuclear complex. Delva, L, et al. Mol. Cell. Biol., 19: 7158-67 (1999)
1998
Mostrar resumen
Two sorts of proteins bind to, and mediate the developmental and homeostatic effects of, retinoic acid (RA): the RAR and RXR nuclear receptors, which act as ligand-dependent transcriptional regulators, and the cellular RA binding proteins (CRABPI and CRABPII). CRABPs are generally known to be implicated in the synthesis, degradation, and control of steady-state levels of RA, yet previous and recent data have indicated that they could play a role in the control of gene expression. Here we show for the first time that, both in vitro and in vivo, CRABPII is associated with RARalpha and RXRalpha in a ligand-independent manner in mammalian cells (HL-60, NB-4, and MCF-7). In the nucleus, this protein complex binds the RXR-RAR-specific response element of an RA target gene (RARE-DR5). Moreover, in the presence of retinoids that bind both the nuclear receptors and CRABPII, enhancement of transactivation by RXRalpha-RARalpha heterodimers is observed in the presence of CRABPII. Thus, CRABPII appears to be a novel transcriptional regulator involved in RA signaling. | 10490651
|