Loss of MMP-2 in murine osteoblasts upregulates osteopontin and bone sialoprotein expression in a circuit regulating bone homeostasis. Mosig, RA; Martignetti, JA Disease models & mechanisms
6
397-403
2013
Mostrar resumen
Multicentric osteolysis with arthropathy (MOA; MIM 605156) is an inherited osteolyses and arthritis syndrome resulting from loss of matrix metalloproteinase 2 (MMP-2). We recently demonstrated that Mmp2(-/-) mice represent a unique model for the study of the human disease, sharing many features of the human syndrome including skeletal dysplasia and defects in osteoblast behavior. We therefore sought to explore the secondary molecular effects of MMP-2 loss, which coexist with the underlying skeletal and osteoblast phenotypes. We used quantitative real-time RT-PCR (qRT-PCR) to measure osteoblast-related gene expression through ex vivo osteoblast differentiation of bone marrow stromal cells (BMSC) from Mmp2(-/-) and Mmp2(+/+) mice. We used western blot to measure osteopontin (OPN) serum levels and immunohistochemical staining to examine bone expression. MMP-2 expression was inhibited in SaOS2 cells using siRNA, and decreased MMP-2 expression at both RNA and protein levels was confirmed by qRT-PCR and western blot, respectively. Mmp2(-/-) BMSC induced to differentiate into osteoblasts were shown to significantly upregulate OPN and bone sialoprotein (BSP) expression levels compared with controls. Transcriptional upregulation was maintained in vivo, as demonstrated by increased levels of OPN in serum and bone in Mmp2(-/-) mice. These effects are generalizable because siRNA-mediated inhibition in cultured cells also upregulated OPN and BSP. OPN and BSP are known to affect MMP-2 expression and activity but have not previously been shown to be regulated by MMP-2. Identification of this newly defined circuitry provides insight into the potential molecular landscape underlying the MOA phenotype and highlights a pathway that might play a role in normal bone homeostasis. | | 22917927
|
Sequential application of steady and pulsatile medium perfusion enhanced the formation of engineered bone. Correia, C; Bhumiratana, S; Sousa, RA; Reis, RL; Vunjak-Novakovic, G Tissue engineering. Part A
19
1244-54
2013
Mostrar resumen
In native bone, cells experience fluctuating shear forces that are induced by pulsatile interstitial flow associated with habitual loading. We hypothesized that the formation of engineered bone can be augmented by replicating such physiologic stimuli to osteogenic cells cultured in porous scaffolds using bioreactors with medium perfusion. To test this hypothesis, we investigated the effect of fluid flow regime on in vitro bone-like tissue development by human adipose stem cells (hASC) cultivated on porous three-dimensional silk fibroin scaffolds. To this end, we varied the sequential relative durations of steady flow (SF) and pulsatile flow (PF) of culture medium applied over a period of 5 weeks, and evaluated their effect on early stages of bone formation. Porous silk fibroin scaffolds (400-600 μm pore size) were seeded with hASC (30×10(6) cells/mL) and cultured in osteogenic medium under four distinct fluid flow regimes: (1) PF for 5 weeks; (2) SF for 1 week, PF for 4 weeks; (3) SF for 2 weeks, PF for 3 weeks; (4) SF for 5 weeks. The PF was applied in 12 h intervals, with the interstitial velocity fluctuating between 400 and 1200 μm/s at a 0.5 Hz frequency for 2 h, followed by 10 h of SF. In all groups, SF was applied at 400 μm/s. The best osteogenic outcomes were achieved for the sequence of 2 weeks of SF and 3 weeks of PF, as evidenced by gene expression (including the PGE2 mechanotransduction marker), construct compositions, histomorphologies, and biomechanical properties. We thus propose that osteogenesis in hASC and the subsequent early stage bone development involve a mechanism, which detects and responds to the level and duration of hydrodynamic shear forces. | Immunohistochemistry | 23259605
|
MG63 osteoblast-like cells exhibit different behavior when grown on electrospun collagen matrix versus electrospun gelatin matrix. Tsai, SW; Liou, HM; Lin, CJ; Kuo, KL; Hung, YS; Weng, RC; Hsu, FY PloS one
7
e31200
2011
Mostrar resumen
Electrospinning is a simple and efficient method of fabricating a non-woven polymeric nanofiber matrix. However, using fluorinated alcohols as a solvent for the electrospinning of proteins often results in protein denaturation. TEM and circular dichroism analysis indicated a massive loss of triple-helical collagen from an electrospun collagen (EC) matrix, and the random coils were similar to those found in gelatin. Nevertheless, from mechanical testing we found the Young's modulus and ultimate tensile stresses of EC matrices were significantly higher than electrospun gelatin (EG) matrices because matrix stiffness can affect many cell behaviors such as cell adhesion, proliferation and differentiation. We hypothesize that the difference of matrix stiffness between EC and EG will affect intracellular signaling through the mechano-transducers Rho kinase (ROCK) and focal adhesion kinase (FAK) and subsequently regulates the osteogenic phenotype of MG63 osteoblast-like cells. From the results, we found there was no significant difference between the EC and EG matrices with respect to either cell attachment or proliferation rate. However, the gene expression levels of OPN, type I collagen, ALP, and OCN were significantly higher in MG63 osteoblast-like cells grown on the EC than in those grown on the EG. In addition, the phosphorylation levels of Y397-FAK, ERK1/2, BSP, and OPN proteins, as well as ALP activity, were also higher on the EC than on the EG. We further inhibited ROCK activation with Y27632 during differentiation to investigate its effects on matrix-mediated osteogenic differentiation. Results showed the extent of mineralization was decreased with inhibition after induction. Moreover, there is no significant difference between EC and EG. From the results of the protein levels of phosphorylated Y397-FAK, ERK1/2, BSP and OPN, ALP activity and mineral deposition, we speculate that the mechanism that influences the osteogenic differentiation of MG63 osteoblast-like cells on EC and EG is matrix stiffness and via ROCK-FAK-ERK1/2. | Western Blotting | 22319618
|
Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Correia, C; Bhumiratana, S; Yan, LP; Oliveira, AL; Gimble, JM; Rockwood, D; Kaplan, DL; Sousa, RA; Reis, RL; Vunjak-Novakovic, G Acta biomaterialia
8
2483-92
2011
Mostrar resumen
Silk fibroin is a potent alternative to other biodegradable biopolymers for bone tissue engineering (TE), because of its tunable architecture and mechanical properties, and its demonstrated ability to support bone formation both in vitro and in vivo. In this study, we investigated a range of silk scaffolds for bone TE using human adipose-derived stem cells (hASCs), an attractive cell source for engineering autologous bone grafts. Our goal was to understand the effects of scaffold architecture and biomechanics and use this information to optimize silk scaffolds for bone TE applications. Silk scaffolds were fabricated using different solvents (aqueous vs. hexafluoro-2-propanol (HFIP)), pore sizes (250-500 μm vs. 500-1000 μm) and structures (lamellar vs. spherical pores). Four types of silk scaffolds combining the properties of interest were systematically compared with respect to bone tissue outcomes, with decellularized trabecular bone (DCB) included as a "gold standard". The scaffolds were seeded with hASCs and cultured for 7 weeks in osteogenic medium. Bone formation was evaluated by cell proliferation and differentiation, matrix production, calcification and mechanical properties. We observed that 400-600 μm porous HFIP-derived silk fibroin scaffold demonstrated the best bone tissue formation outcomes, as evidenced by increased bone protein production (osteopontin, collagen type I, bone sialoprotein), enhanced calcium deposition and total bone volume. On a direct comparison basis, alkaline phosphatase activity (AP) at week 2 and new calcium deposition at week 7 were comparable to the cells cultured in DCB. Yet, among the aqueous-based structures, the lamellar architecture induced increased AP activity and demonstrated higher equilibrium modulus than the spherical-pore scaffolds. Based on the collected data, we propose a conceptual model describing the effects of silk scaffold design on bone tissue formation. | Immunohistochemistry | 22421311
|
Preparation and characterization of mesoporous bioactive glass/polycaprolactone nanofibrous matrix for bone tissues engineering. Hsiu-Mei Lin,Yi-Hsuan Lin,Fu-Yin Hsu Journal of materials science. Materials in medicine
23
2011
Mostrar resumen
A polycaprolactone (PCL) nanofibrous composite matrix having mesoporous bioactive glass nanoparticles (MBG) was fabricated using the electrospinning method, and the microstructural, physical and biological properties of the composite matrix were characterized. The fiber diameters of PCL, 5 | | 22875607
|
Influence of low-level laser associated with osteogenic proteins recombinant human BMP-2 and Hevea brasiliensis on bone repair in Wistar rats. Iyomasa MM, Mardegan Issa JP, de Queiróz Tavares ML, Lara Pereira YC, Sasso Stuani MB, Mishima F, Coutinho-Netto J, Sebald W Microscopy research and technique
2010
Mostrar resumen
This study analyzed the newly formed bone tissue after application of recombinant human BMP-2 (rhBMP-2) and P-1 (extracted from Hevea brasiliensis) proteins, 2 weeks after the creation of a critical bone defect in male Wistar rats treated or not with a low-intensity laser (GaAlAs 780 nm, 60 mW of power, and energy density dose of 30 J/cm(2) ). The animals were divided into two major groups: (1) bone defect plus low-intensity laser treatment and (2) bone defect without laser irradiation. The following subgroups were also analyzed: (a) 5 μg of pure rhBMP-2; (b) 5 μg of pure P-1 fraction; (c) 5 μg of rhBMP-2/monoolein gel; (d) 5 μg of P-1 fraction/monoolein gel; (e) pure monoolein gel. Comparisons of the groups receiving laser treatment with those that did not receive laser irradiation show differences in the areas of new bone tissue. The group treated with 5 μg of rhBMP-2 and laser irradiation was not significantly different (P >0.05) than the nonirradiated group that received the same treatment. The irradiated, rhBMP-2/monoolein gel treatment group showed a lower area of bone formation than the nonirradiated, rhBMP-2/gel monoolein treatment group (P < 0.001). The area of new bone tissue in the other nonirradiated and irradiated groups was not significantly different (P > 0.05). Furthermore, the group that received the 5 μg of rhBMP-2 application showed the greatest bone formation. We conclude that the laser treatment did not interfere with the area of new bone tissue growth and that the greatest stimulus for bone formation involved application of the rhBMP-2 protein. Microsc. Res. Tech. 2011. © 2011 Wiley-Liss, Inc.Copyright © 2011 Wiley-Liss, Inc. | | 21761492
|
In vitro model of vascularized bone: synergizing vascular development and osteogenesis. Correia, C; Grayson, WL; Park, M; Hutton, D; Zhou, B; Guo, XE; Niklason, L; Sousa, RA; Reis, RL; Vunjak-Novakovic, G PloS one
6
e28352
2010
Mostrar resumen
Tissue engineering provides unique opportunities for regenerating diseased or damaged tissues using cells obtained from tissue biopsies. Tissue engineered grafts can also be used as high fidelity models to probe cellular and molecular interactions underlying developmental processes. In this study, we co-cultured human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (MSCs) under various environmental conditions to elicit synergistic interactions leading to the colocalized development of capillary-like and bone-like tissues. Cells were encapsulated at the 1:1 ratio in fibrin gel to screen compositions of endothelial growth medium (EGM) and osteogenic medium (OM). It was determined that, to form both tissues, co-cultures should first be supplied with EGM followed by a 1:1 cocktail of the two media types containing bone morphogenetic protein-2. Subsequent studies of HUVECs and MSCs cultured in decellularized, trabecular bone scaffolds for 6 weeks assessed the effects on tissue construct of both temporal variations in growth-factor availability and addition of fresh cells. The resulting grafts were implanted subcutaneously into nude mice to determine the phenotype stability and functionality of engineered vessels. Two important findings resulted from these studies: (i) vascular development needs to be induced prior to osteogenesis, and (ii) the addition of additional hMSCs at the osteogenic induction stage improves both tissue outcomes, as shown by increased bone volume fraction, osteoid deposition, close proximity of bone proteins to vascular networks, and anastomosis of vascular networks with the host vasculature. Interestingly, these observations compare well with what has been described for native development. We propose that our cultivation system can mimic various aspects of endothelial cell-osteogenic precursor interactions in vivo, and could find utility as a model for studies of heterotypic cellular interactions that couple blood vessel formation with osteogenesis. Artículo Texto completo | Immunohistochemistry | 22164277
|
Optimizing the medium perfusion rate in bone tissue engineering bioreactors. Grayson, WL; Marolt, D; Bhumiratana, S; Fröhlich, M; Guo, XE; Vunjak-Novakovic, G Biotechnology and bioengineering
108
1159-70
2010
Mostrar resumen
There is a critical need to increase the size of bone grafts that can be cultured in vitro for use in regenerative medicine. Perfusion bioreactors have been used to improve the nutrient and gas transfer capabilities and reduce the size limitations inherent to static culture, as well as to modulate cellular responses by hydrodynamic shear. Our aim was to understand the effects of medium flow velocity on cellular phenotype and the formation of bone-like tissues in three-dimensional engineered constructs. We utilized custom-designed perfusion bioreactors to culture bone constructs for 5 weeks using a wide range of superficial flow velocities (80, 400, 800, 1,200, and 1,800 µm/s), corresponding to estimated initial shear stresses ranging from 0.6 to 20 mPa. Increasing the flow velocity significantly affected cell morphology, cell-cell interactions, matrix production and composition, and the expression of osteogenic genes. Within the range studied, the flow velocities ranging from 400 to 800 µm/s yielded the best overall osteogenic responses. Using mathematical models, we determined that even at the lowest flow velocity (80 µm/s) the oxygen provided was sufficient to maintain viability of the cells within the construct. Yet it was clear that this flow velocity did not adequately support the development of bone-like tissue. The complexity of the cellular responses found at different flow velocities underscores the need to use a range of evaluation parameters to determine the quality of engineered bone. | Immunohistochemistry | 21449028
|
Isoform-specific O-glycosylation of osteopontin and bone sialoprotein by polypeptide N-acetylgalactosaminyltransferase-1. Miwa HE, Gerken TA, Jamison O, Tabak LA The Journal of biological chemistry
285
1208-19
2009
Mostrar resumen
Mucin-type O-glycan biosynthesis is regulated by the family of UDP-GalNAc polypeptide:N-acetylgalactosaminlytransfersases (ppGalNAcTs) that catalyzes the first step in the pathway by transferring GalNAc to Ser or Thr residues in a protein from the sugar donor UDP-GalNAc. Because not all Ser/Thr residues are glycosylated, rules must exist that signal which hydroyxamino acids acquire sugar. To date, no universal consensus signal has emerged. Therefore, strategies to deduce the subset of proteins that will be glycosylated by distinct ppGalNAcTs must be developed. Mucin-type O-glycoproteins are present abundantly in bone, where we found multiple ppGalNAcT isoforms, including ppGalNAcT-1, to be highly expressed. Thus, we compared glycoproteins expressed in wild-type and Galnt1-null mice to identify bone-associated proteins that were glycosylated in a ppGalNAcT-1-dependent manner. A reduction in the apparent molecular masses of two SIBLINGs (small integrin binding ligand N-linked glycoproteins), osteopontin (OPN) and bone sialoprotein (BSP) in the Galnt1-null mice relative to those of the wild-type was observed. Several synthetic peptides derived from OPN and BSP sequences were designed to include either known or predicted (in silico) glycosylation sites. In vitro glycosylation assays of these peptides with recombinant ppGalNAcT-1, ppGalNAcT-2, or ppGalNAcT-3 demonstrated that both SIBLINGs contained Thr/Ser residues that were preferentially glycosylated by ppGalNAcT-1. In addition, lysates prepared from wild-type, but not those from Galnt1-null derived osteoblasts, could glycosylate these peptides efficiently, suggesting that OPN and BSP contain sites that are specific for ppGalNAcT-1. Our study presents a novel and systematic approach for identification of isoform-specific substrates of the ppGalNAcT family and suggests ppGalNAcT-1 to be indispensable for O-glycosylation at specific sites of the bone glycoproteins OPN and BSP. Artículo Texto completo | | 19880513
|
Bone grafts engineered from human adipose-derived stem cells in perfusion bioreactor culture. Fröhlich M, Grayson WL, Marolt D, Gimble JM, Kregar-Velikonja N, Vunjak-Novakovic G Tissue engineering. Part A
16
179-89
2009
Mostrar resumen
We report engineering of half-centimeter-sized bone constructs created in vitro using human adipose-derived stem cells (hASCs), decellularized bone scaffolds, and perfusion bioreactors. The hASCs are easily accessible, can be used in an autologous fashion, are rapidly expanded in culture, and are capable of osteogenic differentiation. hASCs from four donors were characterized for their osteogenic capacity, and one representative cell population was used for tissue engineering experiments. Culture-expanded hASCs were seeded on fully decellularized native bone scaffolds (4 mm diameter x 4 mm thick), providing the necessary structural and mechanical environment for osteogenic differentiation, and cultured in bioreactors with medium perfusion. The interstitial flow velocity was set to a level necessary to maintain cell viability and function throughout the construct volume (400 microm/s), via enhanced mass transport. After 5 weeks of cultivation, the addition of osteogenic supplements (dexamethasone, sodium-beta-glycerophosphate, and ascorbic acid-2-phosphate) to culture medium significantly increased the construct cellularity and the amounts of bone matrix components (collagen, bone sialoprotein, and bone osteopontin). Medium perfusion markedly improved the distribution of cells and bone matrix in engineered constructs. In summary, a combination of hASCs, decellularized bone scaffold, perfusion culture, and osteogenic supplements resulted in the formation of compact and viable bone tissue constructs. Artículo Texto completo | | 19678762
|