E-cadherin impairment increases cell survival through Notch-dependent upregulation of Bcl-2. Ferreira, AC; Suriano, G; Mendes, N; Gomes, B; Wen, X; Carneiro, F; Seruca, R; Machado, JC Human molecular genetics
21
334-43
2012
Show Abstract
The role of E-cadherin in tumorigenesis has been attributed to its ability to suppress invasion and metastization. However, E-cadherin impairment may have a wider impact on tumour development. We have previously shown that overexpression of mutant human E-cadherin in Drosophila produces a phenotype characteristic of downregulated Notch. Hence, we hypothesized that Notch signalling may be influenced by E-cadherin and may mediate tumour development associated with E-cadherin deficiency. De novo expression of wild-type E-cadherin in two cellular models led to a significant decrease in the activity of the Notch pathway. In contrast, the ability to inhibit Notch-1 signalling was lost in cells transfected with mutant forms of E-cadherin. Increased Notch-1 activity in E-cadherin-deficient cells correlated with increased expression of Bcl-2, and increased resistance to apoptotic stimuli. After Notch-1 inhibition, E-cadherin-deficient cells were re-sensitized to apoptosis in a similar degree to wild-type E-cadherin cells. We also show that Notch-inhibiting drugs are able to significantly inhibit the growth of E-cadherin-deficient cells xenografted into nude mice. This effect was comparable with the one observed in animals treated with the chemotherapeutic agent taxol, a chemical inducer of cell death. In conclusion, our results show that aberrant Notch-1 activation, Bcl-2 overexpression and increased cell survival are likely to play a crucial role in neoplastic transformation associated with E-cadherin impairment. These findings highlight the possibility of new targeted therapeutical strategies for the treatment of tumours associated with E-cadherin inactivation. | | 21989054
|
Notch- and transducin-like enhancer of split (TLE)-dependent histone deacetylation explain interleukin 12 (IL-12) p70 inhibition by zymosan. Alvarez, Y; Municio, C; Hugo, E; Zhu, J; Alonso, S; Hu, X; Fernández, N; Sánchez Crespo, M The Journal of biological chemistry
286
16583-95
2011
Show Abstract
The fungal analog zymosan induces IL-23 and low amounts of IL-12 p70. This study addresses the molecular mechanisms underlying this cytokine pattern in human monocyte-derived dendritic cells. The transcriptional regulation of il23a, one of the chains of IL-23, depended on the activation of c-Rel and histone H3 phosphorylation, as judged from the association of c-Rel with the il23a promoter and the correlation between IL-23 production and Ser-10-histone H3 phosphorylation. Consistent with its reduced ability to produce IL-12 p70, zymosan induced a transient occupancy of the il12a promoter by c-Rel, blocked the production of IL-12 p70 and the transcription of il12a induced by other stimuli, and triggered the expression and nuclear translocation of the transcriptional repressors of the Notch family hairy and enhancer of split (Hes)-1, Hes5, hairy/enhancer-of-split related with YRPW motif protein (Hey)-1, and transducin-like enhancer of split (TLE). Zymosan also induced the interaction of Hes1 and TLE with histone H3 phosphorylated on Ser-10 and deacetylated on Lys-14. Inhibition of class III histone deacetylases increased the production of IL-12 p70 and partially blunted the inhibitory effect of zymosan on the production of IL-12 p70 elicited by LPS and IFN-γ. These results indicate that the selective induction of IL-23 by β-glucans is explained by the activation of c-Rel associated with Ser-10-histone H3 phosphorylation in the il23a promoter mediated by mitogen- and stress-activated kinase and/or protein kinase A and inhibition of il12a transcription by a mechanism involving activation of several corepressors with the ability to bind TLE and to promote histone deacetylation. | Western Blotting | 21402701
|
Notch receptor and effector expression in von hippel-Lindau disease-associated central nervous system hemangioblastomas. Merrill MJ, Edwards NA, Lonser RR Journal of neurosurgery
2011
Show Abstract
Object Central nervous system hemangioblastomas are the most common manifestation of von Hippel-Lindau (VHL) disease, an autosomal dominant tumor suppressor syndrome that results in loss of VHL protein function and continuous upregulation of hypoxia-inducible factors. These tumors are composed of neoplastic stromal cells and abundant vasculature. Stromal cells express markers consistent with multipotent embryonically arrested hemangioblasts, which are precursors for hematopoietic and vascular lineages. Notch receptors are transmembrane signaling molecules that regulate multiple developmental processes including hematopoiesis and vasculogenesis. To investigate the importance of notch signaling in the development of VHL disease-associated CNS hemangioblastomas, the authors examined the presence of the four notch receptors and downstream notch effectors in this setting. Methods The authors used surgical specimens obtained from confirmed VHL-associated hemangioblastomas. Immunohistochemical analysis for the four notch receptors and the downstream effectors was performed on formalin-fixed paraffin-embedded sections. Western blot analysis for HES1 was performed on frozen specimens. Results All four notch receptors are present in hemangioblastomas. NOTCH1 and NOTCH4 receptors were widely and prominently expressed in both the stromal and vascular cells, NOTCH2 receptor expression was limited to primarily stromal cells, and NOTCH3 receptor expression was limited to vascular cells. All 4 receptors displayed a nuclear presence. Immunohistochemical analysis also demonstrated that downstream notch effectors, HES1 and HES5, were uniformly expressed in tumor stromal and vascular cells, but HES3, HEY1, and HEY2 were not. Strong HES1 expression was confirmed by Western blot analysis. Conclusions The presence of all four notch receptors and downstream effector molecules suggests that the notch signaling pathway plays a critical role in the maintenance of the undifferentiated pluripotent phenotype of these tumors and in the associated vascular response. Moreover, the prominent expression of notch receptors in VHL-associated CNS hemangioblastomas reveals a new and possibly potent therapeutic target. | | 21663414
|
Notch signaling and Hes labeling in the normal and drug-damaged organ of Corti. Shelley A Batts,Christopher R Shoemaker,Yehoash Raphael Hearing research
249
2009
Show Abstract
During the development of the inner ear, the Notch cell signaling pathway is responsible for the specification of the pro-sensory domain and influences cell fate decisions. It is assumed that Notch signaling ends during maturity and cannot be reinitiated to alter the fate of new or existing cells in the organ of Corti. This is in contrast to non-mammalian species which reinitiate Delta 1-Notch1 signaling in response to trauma in the auditory epithelium, resulting in hair cell regeneration through transdifferentiation and/or mitosis. We report immunohistochemical data and Western protein analysis showing that in the aminoglycoside-damaged guinea pig organ of Corti, there is an increase in proteins involved in Notch activation occurring within 24h of a chemical hair cell lesion. The signaling response is characterized by the increased presence of Jagged1 ligand in pillar and Deiters cells, Notch1 signal in surviving supporting cell nuclei, and the absence of Jagged2 and Delta-like1. The pro-sensory bHLH protein Atoh1 was absent at all time points following an ototoxic lesion, while the repressor bHLH transcription factors Hes1 and Hes5 were detected in surviving supporting cell nuclei in the former inner and outer hair cell areas, respectively. Notch pathway proteins peaked at 2 weeks, decreased at 1 month, and nearly disappeared by 2 months. These results indicate that the mammalian auditory epithelium retains the ability to regulate Notch signaling and Notch-dependent Hes activity in response to cellular trauma and that the signaling is transient. Additionally, since Hes activity antagonizes the transcription of pro-sensory Atoh1, the presence of Hes after a lesion may prohibit the occurrence of transdifferentiation in the surviving supporting cells. Full Text Article | | 19185606
|
Polyglutamine expansion causes neurodegeneration by altering the neuronal differentiation program. Abou-Sleymane, G; Chalmel, F; Helmlinger, D; Lardenois, A; Thibault, C; Weber, C; Mérienne, K; Mandel, JL; Poch, O; Devys, D; Trottier, Y Human molecular genetics
15
691-703
2006
Show Abstract
Huntington's disease (HD) and spinocerebellar ataxia type 7 (SCA7) belong to a group of inherited neurodegenerative diseases caused by polyglutamine (polyQ) expansion in corresponding proteins. Transcriptional alteration is a unifying feature of polyQ disorders; however, the relationship between polyQ-induced gene expression deregulation and degenerative processes remains unclear. R6/2 and R7E mouse models of HD and SCA7, respectively, present a comparable retinal degeneration characterized by progressive reduction of electroretinograph activity and important morphological changes of rod photoreceptors. The retina, which is a simple central nervous system tissue, allows correlating functional, morphological and molecular defects. Taking advantage of comparing polyQ-induced degeneration in two retina models, we combined gene expression profiling and molecular biology techniques to decipher the molecular pathways underlying polyQ expansion toxicity. We show that R7E and R6/2 retinal phenotype strongly correlates with loss of expression of a large cohort of genes specifically involved in phototransduction function and morphogenesis of differentiated rod photoreceptors. Accordingly, three key transcription factors (Nrl, Crx and Nr2e3) controlling rod differentiation genes, hence expression of photoreceptor specific traits, are down-regulated. Interestingly, other transcription factors known to cause inhibitory effects on photoreceptor differentiation when mis-expressed, such as Stat3, are aberrantly re-activated. Thus, our results suggest that independently from the protein context, polyQ expansion overrides the control of neuronal differentiation and maintenance, thereby causing dysfunction and degeneration. | | 16434483
|