Mass spectrometric identification of tryptophan nitration sites on proteins in peroxynitrite-treated lysates from PC12 cells. Hiroaki Kawasaki,Keiichi Ikeda,Ayako Shigenaga,Takeshi Baba,Kenji Takamori,Hideoki Ogawa,Fumiyuki Yamakura Free radical biology & medicine
50
2010
Abstract anzeigen
One of the important sites of peroxynitrite action that affects cellular function is known to be nitration of tyrosine residues. However, tryptophan residues could be another target of peroxynitrite-dependent modification of protein function, as we have shown previously using a model protein (F. Yamakura et al., J. Biochem. 138:57-69; 2005). Here, we report the identification of several proteins that allowed us to determine the position of nitrotryptophan in their amino acid sequences in a more complex system. We modified lysates from PC12 cells with and without nerve growth factor (NGF) by treatment with peroxynitrite (0.98 or 4.9 mM). Western blot analyses using anti-6-nitrotryptophan antibody showed several immunoreactive bands and spots, which were subsequently subjected to trypsin digestion and LC-ESI-MS-MS analysis. We identified several tryptic peptides including nitrotryptophan residues, which were derived from L-lactate dehydrogenase A, malate dehydrogenase 1, M2 pyruvate kinase, and heat-shock protein 90 ?, in peroxynitrite-treated lysates from PC12 cells, and l-lactate dehydrogenase A, malate dehydrogenase 1, transaldorase, and lactoylglutathione lyase, in peroxynitrite-treated lysates from NGF/PC12 cells. The molar ratio of 3-nitrotyrosine to 6-nitrotryptophan in protease-digested PC12 cell lysates treated with peroxynitrite was determined to be 5.8 to 1 by using an HPLC-CoulArray system. This is the first report to identify several specific sites of nitrated tryptophan on proteins in a complex system treated with peroxynitrite and to compare the susceptibility of nitration between tryptophan and tyrosine residues of the proteins. | 21108999
|
A pitfall in diagnosis of human prion diseases using detection of protease-resistant prion protein in urine. Contamination with bacterial outer membrane proteins. Hisako Furukawa, Katsumi Doh-ura, Ryo Okuwaki, Susumu Shirabe, Kazuo Yamamoto, Heiichiro Udono, Takashi Ito, Shigeru Katamine, Masami Niwa The Journal of biological chemistry
279
23661-7
2004
Abstract anzeigen
Because a definite diagnosis of prion diseases relies on the detection of the abnormal isoform of prion protein (PrPSc), it has been urgently necessary to establish a non-invasive diagnostic test to detect PrPSc in human prion diseases. To evaluate diagnostic usefulness and reliability of the detection of protease-resistant prion protein in urine, we extensively analyzed proteinase K (PK)-resistant proteins in patients affected with prion diseases and control subjects by Western blot, a coupled liquid chromatography and mass spectrometry analysis, and N-terminal sequence analysis. The PK-resistant signal migrating around 32 kDa previously reported by Shaked et al. (Shaked, G. M., Shaked, Y., Kariv-Inbal, Z., Halimi, M., Avraham, I., and Gabizon, R. (2001) J. Biol. Chem. 276, 31479-31482) was not observed in this study. Instead, discrete protein bands with an apparent molecular mass of approximately 37 kDa were detected in the urine of many patients affected with prion diseases and two diseased controls. Although these proteins also gave strong signals in the Western blot using a variety of anti-PrP antibodies as a primary antibody, we found that the signals were still detectable by incubation of secondary antibodies alone, i.e. in the absence of the primary anti-PrP antibodies. Mass spectrometry and N-terminal protein sequencing analysis revealed that the majority of the PK-resistant 37-kDa proteins in the urine of patients were outer membrane proteins (OMPs) of the Enterobacterial species. OMPs isolated from these bacteria were resistant to PK and the PK-resistant OMPs from the Enterobacterial species migrated around 37 kDa on SDS-PAGE. Furthermore, nonspecific binding of OMPs to antibodies could be mistaken for PrPSc. These findings caution that bacterial contamination can affect the immunological detection of prion protein. Therefore, the presence of Enterobacterial species should be excluded in the immunological tests for PrPSc in clinical samples, in particular, urine. | 15031285
|