Wenn Sie das Fenster schließen, wird Ihre Konfiguration nicht gespeichert, es sei denn, Sie haben Ihren Artikel in die Bestellung aufgenommen oder zu Ihren Favoriten hinzugefügt.
Klicken Sie auf OK, um das MILLIPLEX® MAP-Tool zu schließen oder auf Abbrechen, um zu Ihrer Auswahl zurückzukehren.
Wählen Sie konfigurierbare Panels & Premixed-Kits - ODER - Kits für die zelluläre Signaltransduktion & MAPmates™
Konfigurieren Sie Ihre MILLIPLEX® MAP-Kits und lassen sich den Preis anzeigen.
Konfigurierbare Panels & Premixed-Kits
Unser breites Angebot enthält Multiplex-Panels, für die Sie die Analyten auswählen können, die am besten für Ihre Anwendung geeignet sind. Unter einem separaten Register können Sie das Premixed-Cytokin-Format oder ein Singleplex-Kit wählen.
Kits für die zelluläre Signaltransduktion & MAPmates™
Wählen Sie gebrauchsfertige Kits zur Erforschung gesamter Signalwege oder Prozesse. Oder konfigurieren Sie Ihre eigenen Kits mit Singleplex MAPmates™.
Die folgenden MAPmates™ sollten nicht zusammen analysiert werden: -MAPmates™, die einen unterschiedlichen Assaypuffer erfordern. -Phosphospezifische und MAPmate™ Gesamtkombinationen wie Gesamt-GSK3β und Gesamt-GSK3β (Ser 9). -PanTyr und locusspezifische MAPmates™, z.B. Phospho-EGF-Rezeptor und Phospho-STAT1 (Tyr701). -Mehr als 1 Phospho-MAPmate™ für ein einziges Target (Akt, STAT3). -GAPDH und β-Tubulin können nicht mit Kits oder MAPmates™, die panTyr enthalten, analysiert werden.
.
Bestellnummer
Bestellinformationen
St./Pkg.
Liste
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Wählen Sie bitte Spezies, Panelart, Kit oder Probenart
Um Ihr MILLIPLEX® MAP-Kit zu konfigurieren, wählen Sie zunächst eine Spezies, eine Panelart und/oder ein Kit.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Spezies
Panelart
Gewähltes Kit
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
96-Well Plate
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
Weitere Reagenzien hinzufügen (MAPmates erfordern die Verwendung eines Puffer- und Detektionskits)
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Platzsparende Option Kunden, die mehrere Kits kaufen, können ihre Multiplex-Assaykomponenten in Kunststoffbeuteln anstelle von Packungen erhalten, um eine kompaktere Lagerung zu ermöglichen.
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Das Produkt wurde in Ihre Bestellung aufgenommen
Sie können nun ein weiteres Kit konfigurieren, ein Premixed-Kit wählen, zur Kasse gehen oder das Bestell-Tool schließen.
This Anti-S100A8/S100A9 Antibody, clone 5.5 is validated for use in Flow Cytometry and Immunoprecipitation and Immunohistochemistry and ELISA and Western Blotting for the detection of S100A8/S100A9.
More>>This Anti-S100A8/S100A9 Antibody, clone 5.5 is validated for use in Flow Cytometry and Immunoprecipitation and Immunohistochemistry and ELISA and Western Blotting for the detection of S100A8/S100A9. Less<<
Anti-S100A8/S100A9 Antibody, clone 5.5: SDB (Sicherheitsdatenblätter), Analysenzertifikate und Qualitätszertifikate, Dossiers, Broschüren und andere verfügbare Dokumente.
S100A8, also known as Protein S100-A8, Calgranulin-A, Calprotectin L1L subunit, Cystic fibrosis antigen (CFAG), Leukocyte L1 complex light chain, Migration inhibitory factor related protein 8 (MRP-8), p8, S100 calcium binding protein A8, or Urinary stone protein band A, and encoded by the gene S100A8/CAGA/CFAG/MRP8, is an important protein that binds both zinc and calcium and plays an important role in the regulation of inflammatory processes and immune response. Found in complex with its partner S100A9, S100A8 facilitates chemotaxis, fatty acid trafficking, cytoskeleton reorganization, and NAPDPH oxidase activation and other intracellular activities, as well as a host of extracellular induced activities such as extracellular proinflammatory, antimicrobial, oxidant scavenging, and apoptotic activities . Additionally S100A8 can act as a potent autoimmunity amplifier and appears to augment various cancers and their spread when over expressed. S100A8 is widely expressed and used as biomarker in patients with inflammatory diseases and as a cancer marker in multiple forms of cancer.
References
Product Information
Format
Purified
Presentation
Purified mouse monoclonal IgG1κ in buffer containing 0.1 M Tris-Glycine (pH 7.4), 150 mM NaCl with 0.05% sodium azide.
This Anti-S100A8/S100A9 Antibody, clone 5.5 is validated for use in Flow Cytometry and Immunoprecipitation and Immunohistochemistry and ELISA and Western Blotting for the detection of S100A8/S100A9.
Key Applications
Flow Cytometry
Immunoprecipitation
Immunohistochemistry
ELISA
Western Blotting
Application Notes
Western Blotting Analysis: A representative lot of this antibody was used to detect S100A8/S100A9 in Human monocyte and neutrophil extracts (Edgeworth, J., et al., (1991) JBC. 266(12):7706-7713). Western Blotting Analysis: A representative lot of this antibody was used to detect S100A8/S100A9 in neutrophil extracts (Hogg et al., 1989). Immunoprecipitation Analysis: A representative lot of this antibody was used to detect S100A8/S100A9 in Human monocyte and neutrophil lysate (Edgeworth, J., et al., (1991) JBC. 266(12):7706-7713). Immunoprecipitation Analysis: A representative lot of this antibody was used to detect S100A8/S100A9 in MRP-8 and TL-14 mutant lysate (Hessian P.A., et al., (2001) Eur. J. Biochem. 268:353-363). Immunohistochemistry Analysis: A representative lot of this antibody was used to detect S100A8/S100A9 in Human Bronchus tissue (Hogg, N., et al., (1989) Eur. J. Immunol. 19:1053-1061). Immunohistochemistry Analysis: A representative lot of this antibody was used to detect S100A8/S100A9 in spleen and thymus tissue (Hogg, N., et al., (1989) Eur. J. Immunol. 19:1053-1061). ELISA: A representative lot of this antibody was used to detect S100A8/S100A9 in ELISA (Ryckman, C., et al., (2003) Arthritis & Rheumatism. 48(8):2310-2320).
~8 kda(11kDa) and 14 kDa and as a heterodimer it would be ~24 kDa (under native conditions)
Physicochemical Information
Dimensions
Materials Information
Toxicological Information
Safety Information according to GHS
Safety Information
Product Usage Statements
Quality Assurance
Evaluated by Flow Cytometry on Human PBMCs.
Flow Cytometry Analysis: A 1:80 dilution (0.25 µg) of this antibody detected S100A8 and/or S100A9 in 1x10E6 PBMCs.
Usage Statement
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
Role of S100A8 and S100A9 in neutrophil recruitment in response to monosodium urate monohydrate crystals in the air-pouch model of acute gouty arthritis. Ryckman, Carle, et al. Arthritis Rheum., 48: 2310-20 (2003)
2003
To examine the role of chemokines, S100A8, and S100A9 in neutrophil accumulation induced by the causative agent of gout, monosodium urate monohydrate (MSU) crystals.
The heterodimeric complex of MRP-8 (S100A8) and MRP-14 (S100A9). Antibody recognition, epitope definition and the implications for structure. Hessian, P A and Fisher, L Eur. J. Biochem., 268: 353-63 (2001)
2001
The S100 calcium-binding proteins MRP-8 (S100A8) and MRP-14 (S100A9) form a heterodimeric complex in the cytosol of monocyte and neutrophil cell types circulating in peripheral blood. This complex, but not the individual subunit proteins, is specifically recognized by mAb 27E10. Domains in MRP-8 and MRP-14 mediating heterodimeric complex formation have not yet been identified but it is predicted that the structure of the complex will be similar to homodimeric forms of other S100 proteins. This study makes use of the specificity of mAb 27E10, and an in vitro coupled transcription/translation system to further examine the formation and maintenance of the MRP-8/MRP-14 complex. Truncated mutants of MRP-14 that lack the N-terminal residues 1-4 or the extended C-terminal 'tail', both complex with MRP-8. These deleted domains of MRP-14 are therefore not essential for complex formation. Peptides from MRP-8 or MRP-14, used to induce the epitope recognized by mAb 27E10, show that a critical interaction in complex formation involves the N-terminal of MRP-8 interacting with MRP-14. Phage display analysis defined composite residues of the epitope recognized by mAb 27E10. The epitope is trans-subunit, composed of residues in the C-terminal ends of helix IV in MRP-14 and helix I of MRP-8. A further complex-specific mAb, named 5.5, recognizes the hydrophobic residues in helix IV of MRP-8, exposed during heterodimer formation. The definition of these two epitopes indicates that helices IV of MRP-8 and MRP-14 are also a prominent point of interaction and suggests that the subunit proteins will assume an antiparallel alignment in the heterodimer, similar in structure to the homodimeric forms of S100 proteins.
Identification of p8,14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells. Edgeworth, J, et al. J. Biol. Chem., 266: 7706-13 (1991)
1991
In this report we describe the biochemical characterization of neutrophil and monocyte p8 and p14. Together the two proteins comprise approximately 45% of cytosolic protein in neutrophils and approximately 40-fold less in monocytes. They fractionated together in several chromatographic procedures and were found to exist as a noncovalently associated complex with a stoichiometry of 1:1, named p8,14. Cross-linking experiments showed p8,14 to form heterodimers under conditions simulating the cytosol. An apparent molecular mass of 35,000 daltons was obtained for the p8,14 complex in molecular sizing experiments which suggests the presence of modifications or distinctive structural features. Two major forms of p14 can be identified by two-dimensional gel electrophoresis, both of which form heterodimers with p8. The lower molecular weight variant of p14 lacks Cys-3 (Met-Thr-Cys-Lys-Met...) suggesting that differing translational start sites account for these two forms of p14. A protocol has been devised for the rapid purification of milligram quantities of p8 and p14 from neutrophil cytosol using fast-protein liquid chromatography.
Monoclonal antibody 5.5 reacts with p8,14, a myeloid molecule associated with some vascular endothelium. Hogg, N, et al. Eur. J. Immunol., 19: 1053-61 (1989)
1988
The movement of mononuclear phagocytes and neutrophils from the circulation into tissues is a process which is not completely understood. Monoclonal antibody 5.5 is specific for an 8/14-kDa molecule known variously as the CF antigen, L1 molecule or MRP8 and 14. We show that this molecule, which will be named p8,14 in this study, is expressed in all circulating monocytes and neutrophils as an intracellular product (as well as some types of epithelium). Tissue staining patterns suggest that when monocytes and neutrophils adhere to vascular endothelium, they release this molecule onto the associated endothelium. This process occurs with single monocytes and when monocytes form part of an inflammatory infiltrate. Monoclonal antibody 5.5 does not react with cultured endothelial cells even when stimulated with phorbol ester, tumor necrosis factor, interferon-gamma or interleukin 1 alpha providing further evidence that myeloid cells are the source of the p8,14 in this interactive process. Monocytes which have moved further into such tissues and tissue macrophages in general are monoclonal antibody 5.5 negative, suggesting that the ability to synthesize this molecule may be lost when monocytes leave the circulation and enter tissues. These results indicate that p8,14 plays a role in the interaction between myeloid cells and the vascular endothelium to which they adhere prior to leaving the circulation.